Topology Guaranteed B-Spline Surface/Surface Intersection

Jieyin Yang, Xiaohong Jia, Dong-Ming Yan
{"title":"Topology Guaranteed B-Spline Surface/Surface Intersection","authors":"Jieyin Yang, Xiaohong Jia, Dong-Ming Yan","doi":"10.1145/3618349","DOIUrl":null,"url":null,"abstract":"The surface/surface intersection technique serves as one of the most fundamental functions in modern Computer Aided Design (CAD) systems. Despite the long research history and successful applications of surface intersection algorithms in various CAD industrial software, challenges still exist in balancing computational efficiency, accuracy, as well as topology correctness. Specifically, most practical intersection algorithms fail to guarantee the correct topology of the intersection curve(s) when two surfaces are in near-critical positions, which brings instability to CAD systems. Even in one of the most successfully used commercial geometry engines ACIS, such complicated intersection topology can still be a tough nut to crack. In this paper, we present a practical topology guaranteed algorithm for computing the intersection loci of two B-spline surfaces. Our algorithm well treats all types of common and complicated intersection topology with practical efficiency, including those intersections with multiple branches or cross singularities, contacts in several isolated singular points or highorder contacts along a curve, as well as intersections along boundary curves. We present representative examples of these hard topology situations that challenge not only the open-source geometry engine OCCT but also the commercial engine ACIS. We compare our algorithm in both efficiency and topology correctness on plenty of common and complicated models with the open-source intersection package in SISL, OCCT, and the commercial engine ACIS.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"2 25","pages":"1 - 16"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The surface/surface intersection technique serves as one of the most fundamental functions in modern Computer Aided Design (CAD) systems. Despite the long research history and successful applications of surface intersection algorithms in various CAD industrial software, challenges still exist in balancing computational efficiency, accuracy, as well as topology correctness. Specifically, most practical intersection algorithms fail to guarantee the correct topology of the intersection curve(s) when two surfaces are in near-critical positions, which brings instability to CAD systems. Even in one of the most successfully used commercial geometry engines ACIS, such complicated intersection topology can still be a tough nut to crack. In this paper, we present a practical topology guaranteed algorithm for computing the intersection loci of two B-spline surfaces. Our algorithm well treats all types of common and complicated intersection topology with practical efficiency, including those intersections with multiple branches or cross singularities, contacts in several isolated singular points or highorder contacts along a curve, as well as intersections along boundary curves. We present representative examples of these hard topology situations that challenge not only the open-source geometry engine OCCT but also the commercial engine ACIS. We compare our algorithm in both efficiency and topology correctness on plenty of common and complicated models with the open-source intersection package in SISL, OCCT, and the commercial engine ACIS.
拓扑保证 B 样条曲面/曲面交点
面/面相交技术是现代计算机辅助设计(CAD)系统中最基本的功能之一。尽管曲面相交算法在各种CAD工业软件中有着悠久的研究历史和成功的应用,但在平衡计算效率、精度和拓扑正确性方面仍然存在挑战。具体来说,大多数实用的相交算法在两个曲面处于接近临界位置时,无法保证相交曲线的正确拓扑,给CAD系统带来不稳定性。即使在使用最成功的商业几何引擎之一ACIS中,如此复杂的交集拓扑仍然是一个棘手的问题。本文给出了一种实用的拓扑保证算法,用于计算两个b样条曲面的交点。我们的算法能很好地处理各种类型的常见和复杂的相交拓扑,具有实用的效率,包括具有多个分支或交叉奇异点的相交,多个孤立奇异点的接触或沿曲线的高阶接触,以及沿边界曲线的相交。我们提出了这些硬拓扑情况的代表性示例,这些示例不仅挑战了开源几何引擎OCCT,也挑战了商业引擎ACIS。在大量常见和复杂模型上,我们将算法的效率和拓扑正确性与SISL、OCCT和商用引擎ACIS中的开源交叉包进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信