Jie Guo, Zeru Li, Xueyan He, Beibei Wang, Wenbin Li, Yanwen Guo, Ling-Qi Yan
{"title":"MetaLayer: A Meta-Learned BSDF Model for Layered Materials","authors":"Jie Guo, Zeru Li, Xueyan He, Beibei Wang, Wenbin Li, Yanwen Guo, Ling-Qi Yan","doi":"10.1145/3618365","DOIUrl":null,"url":null,"abstract":"Reproducing the appearance of arbitrary layered materials has long been a critical challenge in computer graphics, with regard to the demanding requirements of both physical accuracy and low computation cost. Recent studies have demonstrated promising results by learning-based representations that implicitly encode the appearance of complex (layered) materials by neural networks. However, existing generally-learned models often struggle between strong representation ability and high runtime performance, and also lack physical parameters for material editing. To address these concerns, we introduce MetaLayer, a new methodology leveraging meta-learning for modeling and rendering layered materials. MetaLayer contains two networks: a BSDFNet that compactly encodes layered materials into implicit neural representations, and a MetaNet that establishes the mapping between the physical parameters of each material and the weights of its corresponding implicit neural representation. A new positional encoding method and a well-designed training strategy are employed to improve the performance and quality of the neural model. As a new learning-based representation, the proposed MetaLayer model provides both fast responses to material editing and high-quality results for a wide range of layered materials, outperforming existing layered BSDF models.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"32 4","pages":"1 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reproducing the appearance of arbitrary layered materials has long been a critical challenge in computer graphics, with regard to the demanding requirements of both physical accuracy and low computation cost. Recent studies have demonstrated promising results by learning-based representations that implicitly encode the appearance of complex (layered) materials by neural networks. However, existing generally-learned models often struggle between strong representation ability and high runtime performance, and also lack physical parameters for material editing. To address these concerns, we introduce MetaLayer, a new methodology leveraging meta-learning for modeling and rendering layered materials. MetaLayer contains two networks: a BSDFNet that compactly encodes layered materials into implicit neural representations, and a MetaNet that establishes the mapping between the physical parameters of each material and the weights of its corresponding implicit neural representation. A new positional encoding method and a well-designed training strategy are employed to improve the performance and quality of the neural model. As a new learning-based representation, the proposed MetaLayer model provides both fast responses to material editing and high-quality results for a wide range of layered materials, outperforming existing layered BSDF models.