High Density Ratio Multi-Fluid Simulation with Peridynamics

Han Yan, Bo-Ning Ren
{"title":"High Density Ratio Multi-Fluid Simulation with Peridynamics","authors":"Han Yan, Bo-Ning Ren","doi":"10.1145/3618347","DOIUrl":null,"url":null,"abstract":"Multiple fluid simulation has raised wide research interest in recent years. Despite the impressive successes of current works, simulation of scenes containing mixing or unmixing of high-density-ratio phases using particle-based discretizations still remains a challenging task. In this paper, we propose a peridynamic mixture-model theory that stably handles high-density-ratio multi-fluid simulations. With assistance of novel scalar-valued volume flow states, a particle based discretization scheme is proposed to calculate all the terms in the multi-phase Navier-Stokes equations in an integral form, We also design a novel mass updating strategy for enhancing phase mass conservation and reducing particle volume variations under high density ratio settings in multi-fluid simulations. As a result, we achieve significantly stabler simulations in mixture-model multi-fluid simulations involving mixing and unmixing of high density ratio phases. Various experiments and comparisons demonstrate the effectiveness of our approach.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple fluid simulation has raised wide research interest in recent years. Despite the impressive successes of current works, simulation of scenes containing mixing or unmixing of high-density-ratio phases using particle-based discretizations still remains a challenging task. In this paper, we propose a peridynamic mixture-model theory that stably handles high-density-ratio multi-fluid simulations. With assistance of novel scalar-valued volume flow states, a particle based discretization scheme is proposed to calculate all the terms in the multi-phase Navier-Stokes equations in an integral form, We also design a novel mass updating strategy for enhancing phase mass conservation and reducing particle volume variations under high density ratio settings in multi-fluid simulations. As a result, we achieve significantly stabler simulations in mixture-model multi-fluid simulations involving mixing and unmixing of high density ratio phases. Various experiments and comparisons demonstrate the effectiveness of our approach.
利用周流体力学进行高密度比多流体模拟
多元流体模拟近年来引起了广泛的研究兴趣。尽管目前的工作取得了令人印象深刻的成功,但使用基于粒子的离散化方法模拟包含高密度比相混合或解混的场景仍然是一项具有挑战性的任务。本文提出了一种稳定处理高密度比多流体模拟的准动力混合模型理论。针对多流体模拟中高密度比条件下的相质量守恒和颗粒体积变化,提出了一种基于颗粒的离散化方法,以积分形式计算多相Navier-Stokes方程中的所有项,并设计了一种新的质量更新策略。因此,在涉及高密度比相混合和解混的混合-模型多流体模拟中,我们获得了明显更稳定的模拟结果。各种实验和比较证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信