Efficient Visualization of Light Pollution for the Night Sky

Y. Dobashi, Naoto Ishikawa, Kei Iwasaki
{"title":"Efficient Visualization of Light Pollution for the Night Sky","authors":"Y. Dobashi, Naoto Ishikawa, Kei Iwasaki","doi":"10.1145/3618337","DOIUrl":null,"url":null,"abstract":"Artificial light sources make our daily life convenient, but cause a severe problem called light pollution. We propose a novel system for efficient visualization of light pollution in the night sky. Numerous methods have been proposed for rendering the sky, but most of these focus on rendering of the daytime or the sunset sky where the sun is the only, or dominant light source. For the visualization of the light pollution, however, we must consider many city light sources on the ground, resulting in excessive computational cost. We address this problem by precomputing a set of intensity distributions for the sky illuminated by city light at various locations and with different atmospheric conditions. We apply a principal component analysis and fast Fourier transform to the precomputed distributions, allowing us to efficiently visualize the extent of the light pollution. Using this method, we can achieve one to two orders of magnitudes faster computation compared to a naive approach that simply accumulates the scattered intensity for each viewing ray. Furthermore, the fast computation allows us to interactively solve the inverse problem that determines the city light intensity needed to reduce light pollution. Our system provides the user with both a forward and inverse investigation tool for the study and minimization of light pollution.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"19 8","pages":"1 - 11"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial light sources make our daily life convenient, but cause a severe problem called light pollution. We propose a novel system for efficient visualization of light pollution in the night sky. Numerous methods have been proposed for rendering the sky, but most of these focus on rendering of the daytime or the sunset sky where the sun is the only, or dominant light source. For the visualization of the light pollution, however, we must consider many city light sources on the ground, resulting in excessive computational cost. We address this problem by precomputing a set of intensity distributions for the sky illuminated by city light at various locations and with different atmospheric conditions. We apply a principal component analysis and fast Fourier transform to the precomputed distributions, allowing us to efficiently visualize the extent of the light pollution. Using this method, we can achieve one to two orders of magnitudes faster computation compared to a naive approach that simply accumulates the scattered intensity for each viewing ray. Furthermore, the fast computation allows us to interactively solve the inverse problem that determines the city light intensity needed to reduce light pollution. Our system provides the user with both a forward and inverse investigation tool for the study and minimization of light pollution.
夜空光污染高效可视化
人造光源给我们的日常生活带来了便利,但也造成了严重的光污染问题。我们提出了一种有效的夜空光污染可视化系统。许多方法已经提出了渲染天空,但大多数这些集中在渲染白天或日落天空,太阳是唯一的,或主要的光源。然而,为了实现光污染的可视化,必须考虑地面上的多个城市光源,导致计算成本过高。我们通过预先计算一组城市灯光在不同位置和不同大气条件下照亮天空的强度分布来解决这个问题。我们将主成分分析和快速傅里叶变换应用于预先计算的分布,使我们能够有效地可视化光污染的程度。使用这种方法,与简单地累积每条观察射线的散射强度的朴素方法相比,我们可以实现一到两个数量级的快速计算。此外,快速计算使我们能够交互式地解决确定减少光污染所需的城市光强度的逆问题。我们的系统为用户提供了研究和减少光污染的正反向调查工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信