Comparison of ground reaction force and contact time during various-direction lunges between badminton shoes without and with a lateral forefoot wedge sole
Wei-Han Chen, Chi-Hsien Chen, Wen-Wen Yang, Gin-Yun Lin, Wei-Chun Hsu, T. Shiang, Chiang Liu
{"title":"Comparison of ground reaction force and contact time during various-direction lunges between badminton shoes without and with a lateral forefoot wedge sole","authors":"Wei-Han Chen, Chi-Hsien Chen, Wen-Wen Yang, Gin-Yun Lin, Wei-Chun Hsu, T. Shiang, Chiang Liu","doi":"10.1177/17543371231213772","DOIUrl":null,"url":null,"abstract":"This study compared the ground reaction force (GRF), GRF ratio, and contact time between badminton shoes without and with a lateral forefoot wedge sole during lunges in three directions. Fifteen collegiate athletes wore forefoot wedge shoes (5° incline) and control shoes without a lateral forefoot wedge sole (in random order) and performed three typical badminton lunge movements (forward, lateral, and backward directions). A total of nine GRF, GRF ratio, and contact time parameters were analyzed. A paired t test was performed to assess the differences between two shoes. The significance level was set at p < 0.0056 (0.05/9) based on Bonferroni correction to avoid chances of type 1 errors. In the forward lunge, the forefoot wedge shoes resulted in a significantly higher average vertical ground reaction force (GRFv, 3.9%), average horizontal GRF (GRFh, 7.8%) in the braking phase and higher average GRFh (3.9%) in the propulsion phase than the control shoes. In the lateral lunge, the forefoot wedge shoes resulted in a significantly shorter total contact time (−4.6%) than the control shoes in the backward lunge, the forefoot wedge shoes resulted in a significantly higher GRFh to GRFv ratio (6.4%) in the braking phase compared with the control shoes. Thus, shoes with a lateral forefoot wedge sole can effectively enhance mechanical performance in direction changes during forward and backward badminton lunges, and shorter the contact time during lateral badminton lunges. Shoes with a lateral forefoot wedge sole can be considered when designing athletic footwear.","PeriodicalId":20674,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology","volume":"20 26","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17543371231213772","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study compared the ground reaction force (GRF), GRF ratio, and contact time between badminton shoes without and with a lateral forefoot wedge sole during lunges in three directions. Fifteen collegiate athletes wore forefoot wedge shoes (5° incline) and control shoes without a lateral forefoot wedge sole (in random order) and performed three typical badminton lunge movements (forward, lateral, and backward directions). A total of nine GRF, GRF ratio, and contact time parameters were analyzed. A paired t test was performed to assess the differences between two shoes. The significance level was set at p < 0.0056 (0.05/9) based on Bonferroni correction to avoid chances of type 1 errors. In the forward lunge, the forefoot wedge shoes resulted in a significantly higher average vertical ground reaction force (GRFv, 3.9%), average horizontal GRF (GRFh, 7.8%) in the braking phase and higher average GRFh (3.9%) in the propulsion phase than the control shoes. In the lateral lunge, the forefoot wedge shoes resulted in a significantly shorter total contact time (−4.6%) than the control shoes in the backward lunge, the forefoot wedge shoes resulted in a significantly higher GRFh to GRFv ratio (6.4%) in the braking phase compared with the control shoes. Thus, shoes with a lateral forefoot wedge sole can effectively enhance mechanical performance in direction changes during forward and backward badminton lunges, and shorter the contact time during lateral badminton lunges. Shoes with a lateral forefoot wedge sole can be considered when designing athletic footwear.
期刊介绍:
The Journal of Sports Engineering and Technology covers the development of novel sports apparel, footwear, and equipment; and the materials, instrumentation, and processes that make advances in sports possible.