GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators

Haitao Yang, Bo Sun, Liyan Chen, Amy Pavel, Qixing Huang
{"title":"GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators","authors":"Haitao Yang, Bo Sun, Liyan Chen, Amy Pavel, Qixing Huang","doi":"10.1145/3618371","DOIUrl":null,"url":null,"abstract":"We study how to optimize the latent space of neural shape generators that map latent codes to 3D deformable shapes. The key focus is to look at a deformable shape generator from a differential geometry perspective. We define a Riemannian metric based on as-rigid-as-possible and as-conformal-as-possible deformation energies. Under this metric, we study two desired properties of the latent space: 1) straight-line interpolations in latent codes follow geodesic curves; 2) latent codes disentangle pose and shape variations at different scales. Strictly enforcing the geometric interpolation property, however, only applies if the metric matrix is a constant. We show how to achieve this property approximately by enforcing that geodesic interpolations are axis-aligned, i.e., interpolations along coordinate axis follow geodesic curves. In addition, we introduce a novel approach that decouples pose and shape variations via generalized eigendecomposition. We also study efficient regularization terms for learning deformable shape generators, e.g., that promote smooth interpolations. Experimental results on benchmark datasets show that our approach leads to interpretable latent codes, improves the generalizability of synthetic shapes, and enhances performance in geodesic interpolation and geodesic shooting.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"32 25","pages":"1 - 20"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study how to optimize the latent space of neural shape generators that map latent codes to 3D deformable shapes. The key focus is to look at a deformable shape generator from a differential geometry perspective. We define a Riemannian metric based on as-rigid-as-possible and as-conformal-as-possible deformation energies. Under this metric, we study two desired properties of the latent space: 1) straight-line interpolations in latent codes follow geodesic curves; 2) latent codes disentangle pose and shape variations at different scales. Strictly enforcing the geometric interpolation property, however, only applies if the metric matrix is a constant. We show how to achieve this property approximately by enforcing that geodesic interpolations are axis-aligned, i.e., interpolations along coordinate axis follow geodesic curves. In addition, we introduce a novel approach that decouples pose and shape variations via generalized eigendecomposition. We also study efficient regularization terms for learning deformable shape generators, e.g., that promote smooth interpolations. Experimental results on benchmark datasets show that our approach leads to interpretable latent codes, improves the generalizability of synthetic shapes, and enhances performance in geodesic interpolation and geodesic shooting.
GeoLatent:为可变形形状生成器设计潜空间的几何方法
我们研究了如何优化神经形状生成器的潜在空间,将潜在代码映射到三维可变形形状。重点是从微分几何的角度来看一个可变形的形状生成器。我们定义了一个基于尽可能刚性和尽可能共形变形能的黎曼度量。在这个度量下,我们研究了潜在空间的两个期望性质:1)隐码的直线插值遵循测地线曲线;2)潜码在不同尺度上对姿态和形状变化进行了分解。然而,严格执行几何插值性质只适用于度量矩阵是常数的情况。我们展示了如何通过强制测地线插值是轴向的,即沿坐标轴的插值遵循测地线曲线来近似地实现这一特性。此外,我们还引入了一种通过广义特征分解来解耦姿态和形状变化的新方法。我们还研究了用于学习可变形形状生成器的有效正则化项,例如,促进平滑插值。在基准数据集上的实验结果表明,该方法产生了可解释的潜在代码,提高了合成形状的泛化性,提高了测地线插值和测地线拍摄的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信