Digitalization of the thermoplastic beryllium oxide slurry forming process using ultrasonic activation

U. Zhapbasbayev, G. Ramazanova, H. Retnawati, Z. Sattinova
{"title":"Digitalization of the thermoplastic beryllium oxide slurry forming process using ultrasonic activation","authors":"U. Zhapbasbayev, G. Ramazanova, H. Retnawati, Z. Sattinova","doi":"10.31643/2024/6445.23","DOIUrl":null,"url":null,"abstract":"This paper presents the results of the digitalization of the thermoplastic beryllium oxide slurry forming process using ultrasonic activation. Ceramics made from beryllium oxide (BeO) using ultrasound-assisted forming exhibit more intense sintering and, in comparison to ceramics formed without ultrasound, have reduced shrinkage (by 2.4-4.3%) and sintering temperature (by 50-180°C). The forming processes occurring during ultrasonic treatment resulted in the homogenization of the thermoplastic suspension and dense packing of BeO powders in the casting. Ultrasound activation alters the rheology of the thermoplastic slurries. These changes are attributed to processes of slurry mass dispersion and mass exchange at the phase boundary of the suspension. Ultrasound activation also enhances casting properties. During the cooling-solidification process under the influence of ultrasound, the density and strength of the castings increase due to the effective compensation of shrinkage. Shrinkage compensation is carried out according to the classical scheme by supplying a liquid suspension. For hot casting with ultrasound of thermoplastic beryllium oxide slurries, it is advisable to use compositions with a binder content of 11.0-11.7% by weight since these compositions provide better shrinkage compensation and, consequently, a denser casting.","PeriodicalId":17896,"journal":{"name":"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu","volume":"40 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31643/2024/6445.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results of the digitalization of the thermoplastic beryllium oxide slurry forming process using ultrasonic activation. Ceramics made from beryllium oxide (BeO) using ultrasound-assisted forming exhibit more intense sintering and, in comparison to ceramics formed without ultrasound, have reduced shrinkage (by 2.4-4.3%) and sintering temperature (by 50-180°C). The forming processes occurring during ultrasonic treatment resulted in the homogenization of the thermoplastic suspension and dense packing of BeO powders in the casting. Ultrasound activation alters the rheology of the thermoplastic slurries. These changes are attributed to processes of slurry mass dispersion and mass exchange at the phase boundary of the suspension. Ultrasound activation also enhances casting properties. During the cooling-solidification process under the influence of ultrasound, the density and strength of the castings increase due to the effective compensation of shrinkage. Shrinkage compensation is carried out according to the classical scheme by supplying a liquid suspension. For hot casting with ultrasound of thermoplastic beryllium oxide slurries, it is advisable to use compositions with a binder content of 11.0-11.7% by weight since these compositions provide better shrinkage compensation and, consequently, a denser casting.
利用超声波活化热塑性氧化铍浆料成型工艺的数字化
本文介绍了超声波活化热塑性氧化铍料浆成形过程的数字化研究结果。使用超声波辅助成型的氧化铍(BeO)陶瓷表现出更强烈的烧结,与没有超声波成型的陶瓷相比,收缩(减少2.4-4.3%)和烧结温度(减少50-180°C)。在超声处理过程中发生的成形过程导致了热塑性悬浮液的均匀化和BeO粉末在铸件中的致密堆积。超声活化改变了热塑性浆料的流变学。这些变化归因于浆液质量分散和悬浮液相边界的质量交换过程。超声波活化也能提高铸件的性能。在超声作用下的冷却凝固过程中,由于收缩的有效补偿,铸件的密度和强度得到提高。根据经典方案,通过提供液体悬浮液进行收缩补偿。对于热塑性氧化铍浆料的超声热铸造,建议使用按重量计粘合剂含量为11.0-11.7%的组合物,因为这些组合物提供更好的收缩补偿,因此铸造更致密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信