The influence of substrate temperature on the structure and optical properties of NiO thin films deposited using the magnetron sputtering in the layer-by-layer growth regime

A. Ievtushenko, V. Karpyna, O.I. Bykov, M. Dranchuk, O. Kolomys, D.M. Maziar, V. Strelchuk, S.P. Starik, V.A. Baturin, О.Y. Karpenko, O.S. Lytvyn
{"title":"The influence of substrate temperature on the structure and optical properties of NiO thin films deposited using the magnetron sputtering in the layer-by-layer growth regime","authors":"A. Ievtushenko, V. Karpyna, O.I. Bykov, M. Dranchuk, O. Kolomys, D.M. Maziar, V. Strelchuk, S.P. Starik, V.A. Baturin, О.Y. Karpenko, O.S. Lytvyn","doi":"10.15407/spqeo26.04.398","DOIUrl":null,"url":null,"abstract":"Vanadium oxide (VO x ) thin films are promising materials, exhibiting electrical, optical, and mechanical properties highly tunable by processing and structure. This work uniquely applying atomic force microscopy (AFM) nanoindentation correlated with X-ray diffractometry and Raman spectroscopy structural analysis to investigate the intricate connections between VO x post-annealing, phase composition, and resulting nanoscale mechanical functionality. Utilizing an ultra-sharp diamond tip as a nanoscale indenter, indentation is performed on VO x films with systematic variations in structure – from mixed insulating oxides to VO 2 -dominated films. Analytical modeling enables extraction of hardness and elastic modulus with nanoscale resolution. Dramatic mechanical property variations are observed between compositions, with order-of-magnitude increases in hardness and elastic modulus for the VO 2 -rich films versus insulating oxides. Ion implantation further enhances nanomechanical performance through targeted defect engineering. Correlating indentation-derived trends with detailed structural and morphological characterization elucidates explicit structure-property relationships inaccessible by other techniques. The approach provides critical mechanics-driven insights into links between VO x synthesis, structure evolution, and property development. Broader implementation will accelerate processing optimization for electronics and advanced fundamental understanding of nanoscale structure-functionality relationships","PeriodicalId":21598,"journal":{"name":"Semiconductor physics, quantum electronics and optoelectronics","volume":"62 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor physics, quantum electronics and optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/spqeo26.04.398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vanadium oxide (VO x ) thin films are promising materials, exhibiting electrical, optical, and mechanical properties highly tunable by processing and structure. This work uniquely applying atomic force microscopy (AFM) nanoindentation correlated with X-ray diffractometry and Raman spectroscopy structural analysis to investigate the intricate connections between VO x post-annealing, phase composition, and resulting nanoscale mechanical functionality. Utilizing an ultra-sharp diamond tip as a nanoscale indenter, indentation is performed on VO x films with systematic variations in structure – from mixed insulating oxides to VO 2 -dominated films. Analytical modeling enables extraction of hardness and elastic modulus with nanoscale resolution. Dramatic mechanical property variations are observed between compositions, with order-of-magnitude increases in hardness and elastic modulus for the VO 2 -rich films versus insulating oxides. Ion implantation further enhances nanomechanical performance through targeted defect engineering. Correlating indentation-derived trends with detailed structural and morphological characterization elucidates explicit structure-property relationships inaccessible by other techniques. The approach provides critical mechanics-driven insights into links between VO x synthesis, structure evolution, and property development. Broader implementation will accelerate processing optimization for electronics and advanced fundamental understanding of nanoscale structure-functionality relationships
在逐层生长机制下使用磁控溅射法沉积的氧化镍薄膜的结构和光学特性受基底温度的影响
氧化钒(VO x)薄膜是一种很有前途的材料,具有高度可调的电学、光学和机械性能。这项工作独特地应用原子力显微镜(AFM)纳米压痕与x射线衍射和拉曼光谱结构分析相结合,研究了VO x退火后,相组成和纳米级机械功能之间的复杂联系。利用超锋利的金刚石尖端作为纳米级压痕器,在具有系统结构变化的VO x薄膜上进行压痕-从混合绝缘氧化物到VO 2主导的薄膜。解析建模使硬度和弹性模量的提取与纳米级的分辨率。在不同成分之间观察到显著的机械性能变化,与绝缘氧化物相比,富含VO 2的薄膜的硬度和弹性模量增加了数量级。离子注入通过靶向缺陷工程进一步提高纳米力学性能。将压痕衍生的趋势与详细的结构和形态特征相关联,阐明了其他技术无法实现的明确的结构-性质关系。该方法为VO x合成、结构演变和属性开发之间的联系提供了关键的力学驱动见解。更广泛的实施将加速电子工艺的优化,并提高对纳米结构-功能关系的基本理解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信