Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures

Sheel Ganatra
{"title":"Cyclic homology, S1–equivariant Floer\ncohomology and Calabi–Yau structures","authors":"Sheel Ganatra","doi":"10.2140/gt.2023.27.3461","DOIUrl":null,"url":null,"abstract":"We construct geometric maps from the cyclic homology groups of the (compact or wrapped) Fukaya category to the corresponding $S^1$-equivariant (Floer/quantum or symplectic) cohomology groups, which are natural with respect to all Gysin and periodicity exact sequences and are isomorphisms whenever the (non-equivariant) open-closed map is. These {\\em cyclic open-closed maps} give (a) constructions of geometric smooth and/or proper Calabi-Yau structures on Fukaya categories (which in the proper case implies the Fukaya category has a cyclic A-infinity model in characteristic 0) and (b) a purely symplectic proof of the non-commutative Hodge-de Rham degeneration conjecture for smooth and proper subcategories of Fukaya categories of compact symplectic manifolds. Further applications of cyclic open-closed maps, to counting curves in mirror symmetry and to comparing topological field theories, are the subject of joint projects with Perutz-Sheridan [GPS1, GPS2] and Cohen [CG].","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"87 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.3461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We construct geometric maps from the cyclic homology groups of the (compact or wrapped) Fukaya category to the corresponding $S^1$-equivariant (Floer/quantum or symplectic) cohomology groups, which are natural with respect to all Gysin and periodicity exact sequences and are isomorphisms whenever the (non-equivariant) open-closed map is. These {\em cyclic open-closed maps} give (a) constructions of geometric smooth and/or proper Calabi-Yau structures on Fukaya categories (which in the proper case implies the Fukaya category has a cyclic A-infinity model in characteristic 0) and (b) a purely symplectic proof of the non-commutative Hodge-de Rham degeneration conjecture for smooth and proper subcategories of Fukaya categories of compact symplectic manifolds. Further applications of cyclic open-closed maps, to counting curves in mirror symmetry and to comparing topological field theories, are the subject of joint projects with Perutz-Sheridan [GPS1, GPS2] and Cohen [CG].
循环同源性、S1-常量浮同构和卡拉比-尤结构
构造了由(紧或包的)Fukaya范畴的循环同调群到相应的$S^1$-等变(花/量子或辛)上同调群的几何映射,这些映射对于所有Gysin和周期精确序列都是自然的,并且在(非等变)开闭映射是同构的。这些{\em循环开闭映射}给出了(a)在Fukaya范畴上的几何光滑和/或固有Calabi-Yau结构的构造(在固有情况下意味着Fukaya范畴具有特征为0的循环a -∞模型)和(b)紧辛流形的Fukaya范畴的光滑子范畴和固有子范畴的非交换Hodge-de Rham退化猜想的纯辛证明。循环开闭映射的进一步应用,对镜像对称曲线的计数和对拓扑场理论的比较,是Perutz-Sheridan [GPS1, GPS2]和Cohen [CG]联合项目的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信