Elevating Understanding: Linking High-Altitude Hypoxia to Brain Aging Through EEG Functional Connectivity and Spectral Analyses

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Carlos Coronel-Oliveros, Vicente Medel, Grace A Whitaker, Aland Astudillo, David Gallagher, Lucía Zepeda-Rivero, Pavel Prado, W. El-Deredy, P. Orio, Alejandro Weinstein
{"title":"Elevating Understanding: Linking High-Altitude Hypoxia to Brain Aging\n Through EEG Functional Connectivity and Spectral Analyses","authors":"Carlos Coronel-Oliveros, Vicente Medel, Grace A Whitaker, Aland Astudillo, David Gallagher, Lucía Zepeda-Rivero, Pavel Prado, W. El-Deredy, P. Orio, Alejandro Weinstein","doi":"10.1162/netn_a_00352","DOIUrl":null,"url":null,"abstract":"High-altitude hypoxia triggers brain function changes reminiscent of those in healthy aging and Alzheimer's disease, compromising cognition and executive functions. Our study sought to validate high-altitude hypoxia as a model for assessing brain activity disruptions akin to aging. We collected EEG data from sixteen healthy volunteers during acute high-altitude hypoxia (at 4000 masl) and at sea-level, focusing on relative changes in power and aperiodic slope of the EEG spectrum due to hypoxia. Additionally, we examined functional connectivity using wPLI, and functional segregation and integration in using graph theory tools. High altitude led to slower brain oscillations, i.e., increased δ and reduced α power, and flattened the 1/f aperiodic slope, indicating higher electrophysiological noise, akin to healthy aging. Notably, functional integration strengthened in the θ band, exhibiting unique topographical patterns at the subnetwork level, including increased frontocentral and reduced occipitoparietal integration. Moreover, we discovered significant correlations between subjects' age, 1/f slope, θ band integration, and observed robust effects of hypoxia after adjusting for age. Our findings shed light on how reduced oxygen levels at high-altitudes influence brain activity patterns resembling those in neurodegenerative disorders and aging, making high-altitude hypoxia a promising model for comprehending the brain in health and disease.","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"74 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00352","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

High-altitude hypoxia triggers brain function changes reminiscent of those in healthy aging and Alzheimer's disease, compromising cognition and executive functions. Our study sought to validate high-altitude hypoxia as a model for assessing brain activity disruptions akin to aging. We collected EEG data from sixteen healthy volunteers during acute high-altitude hypoxia (at 4000 masl) and at sea-level, focusing on relative changes in power and aperiodic slope of the EEG spectrum due to hypoxia. Additionally, we examined functional connectivity using wPLI, and functional segregation and integration in using graph theory tools. High altitude led to slower brain oscillations, i.e., increased δ and reduced α power, and flattened the 1/f aperiodic slope, indicating higher electrophysiological noise, akin to healthy aging. Notably, functional integration strengthened in the θ band, exhibiting unique topographical patterns at the subnetwork level, including increased frontocentral and reduced occipitoparietal integration. Moreover, we discovered significant correlations between subjects' age, 1/f slope, θ band integration, and observed robust effects of hypoxia after adjusting for age. Our findings shed light on how reduced oxygen levels at high-altitudes influence brain activity patterns resembling those in neurodegenerative disorders and aging, making high-altitude hypoxia a promising model for comprehending the brain in health and disease.
提升理解力:通过脑电图功能连接性和频谱分析将高海拔缺氧与脑衰老联系起来
高海拔缺氧会引发大脑功能变化,让人想起健康衰老和阿尔茨海默病,损害认知和执行功能。我们的研究试图验证高海拔缺氧作为评估大脑活动中断的模型,类似于衰老。我们收集了16名健康志愿者在急性高原缺氧(4000马氏度)和海平面下的脑电图数据,重点研究了缺氧引起的脑电图频谱功率和非周期斜率的相对变化。此外,我们使用wPLI检查了功能连通性,并使用图论工具检查了功能分离和集成。高海拔导致脑振荡变慢,即δ功率增加,α功率降低,1/f非周期斜率变平,表明电生理噪声较高,类似于健康衰老。值得注意的是,功能整合在θ波段加强,在亚网络水平上表现出独特的地形模式,包括额中央整合增加和枕顶整合减少。此外,我们发现受试者的年龄、1/f斜率、θ波段积分之间存在显著的相关性,并且在调整年龄后观察到缺氧的强大影响。我们的发现揭示了高海拔地区低氧水平如何影响大脑活动模式,类似于神经退行性疾病和衰老,使高海拔缺氧成为理解大脑健康和疾病的一个有希望的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信