Multi-Dimensional Liquid Chromatography of Pulse Triacylglycerols with Triple Parallel Mass Spectrometry

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL
W. Byrdwell, H. K. Kotapati
{"title":"Multi-Dimensional Liquid Chromatography of Pulse Triacylglycerols with Triple Parallel Mass Spectrometry","authors":"W. Byrdwell, H. K. Kotapati","doi":"10.3390/separations10120594","DOIUrl":null,"url":null,"abstract":"We analyzed ten pulses (the dried seeds of legumes), i.e., baby lima beans, black beans, black-eyed peas, butter beans, cranberry beans, garbanzo beans, green split peas, lentils, navy beans, and pinto beans, using three-dimensional liquid chromatography (3D-LC) with parallel second dimensions, LC × (LC + LC). We combined non-aqueous reversed-phase (NARP) chromatography as the first dimension separation, 1D, with argentation UHPLC for separation based on degree and location of unsaturation in the first second dimension, 2D(1), and multi-cycle NARP-UHPLC in the second second dimension, 2D(2). Pulses contained 1.9% to 2.7% lipids, except garbanzo beans, which contained 6.2% lipids. High-resolution, accurate-mass (HRAM) orbitrap mass spectrometry (MS) was used to perform lipidomic analysis of the 2D(2) and percent relative quantification, showing that the most abundant average triacylglycerol (TAG) molecular species across all pulses were PLL at 10.67% and PLLn at 10.45%. Common beans (Phaseolus vulgaris) were clustered together using principal component analysis (PCA), showing the highest levels of linolenic acid, C18:3, in molecular species such as PLnLn, LLnLn, and OLLn, with palmitic (P), C16:0, linoleic (L), 18:2, linolenic (Ln), 18:3, and oleic (O), 18:1, FAs. Calibration curves derived from interweaved sets of regioisomer standards allowed the absolute quantification of 1,2- and 1,3-regioisomers for a subset of TAGs.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"118 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120594","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We analyzed ten pulses (the dried seeds of legumes), i.e., baby lima beans, black beans, black-eyed peas, butter beans, cranberry beans, garbanzo beans, green split peas, lentils, navy beans, and pinto beans, using three-dimensional liquid chromatography (3D-LC) with parallel second dimensions, LC × (LC + LC). We combined non-aqueous reversed-phase (NARP) chromatography as the first dimension separation, 1D, with argentation UHPLC for separation based on degree and location of unsaturation in the first second dimension, 2D(1), and multi-cycle NARP-UHPLC in the second second dimension, 2D(2). Pulses contained 1.9% to 2.7% lipids, except garbanzo beans, which contained 6.2% lipids. High-resolution, accurate-mass (HRAM) orbitrap mass spectrometry (MS) was used to perform lipidomic analysis of the 2D(2) and percent relative quantification, showing that the most abundant average triacylglycerol (TAG) molecular species across all pulses were PLL at 10.67% and PLLn at 10.45%. Common beans (Phaseolus vulgaris) were clustered together using principal component analysis (PCA), showing the highest levels of linolenic acid, C18:3, in molecular species such as PLnLn, LLnLn, and OLLn, with palmitic (P), C16:0, linoleic (L), 18:2, linolenic (Ln), 18:3, and oleic (O), 18:1, FAs. Calibration curves derived from interweaved sets of regioisomer standards allowed the absolute quantification of 1,2- and 1,3-regioisomers for a subset of TAGs.
脉冲三酰甘油的多维液相色谱法和三重平行质谱法
采用平行二维LC × (LC + LC)的三维液相色谱(3D-LC)技术,对10种豆类(豆科植物的干燥种子),即小利马豆、黑豆、黑眼豆、黄油豆、蔓越莓豆、鹰嘴豆、绿裂豆、扁豆、海军豆和斑豆进行了分析。我们将非水反相色谱(NARP)作为第一维分离方法(1D),根据不饱和程度和位置在第一维(1)和多循环NARP-UHPLC (2D)中进行分离。豆类含脂量为1.9% ~ 2.7%,鹰嘴豆含脂量为6.2%。采用高分辨率、精确质量(HRAM)轨道rap质谱(MS)对2D(2)和百分比相对定量进行脂质组学分析,结果表明,在所有脉冲中,三酰甘油(TAG)平均分子种丰度最高的是PLL(10.67%)和PLLn(10.45%)。采用主成分分析(PCA)对菜豆(Phaseolus vulgaris)进行聚类分析,发现菜豆(PLnLn)、菜豆(LLnLn)和菜豆(OLLn)中亚麻酸(C18:3)含量最高,棕榈酸(P)含量为C16:0,亚油酸(L)含量为18:2,亚麻酸(Ln)含量为18:3,油酸(O)含量为18:1,FAs含量最高。从交织的区域异构体标准集衍生的校准曲线允许对标签子集的1,2-和1,3-区域异构体进行绝对定量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信