Seung Woo Jin, Jin Sung Park, Duck Bin Yun, Sang Chul Lee, Jong Kyo Choi, Min-Suk Oh, Sung Jin Kim
{"title":"Effects of Cr additions on Corrosion and Erosion-Corrosion Behaviors in the Weld Heat-Affected Zone of Hadfield Steel in Brine Environments","authors":"Seung Woo Jin, Jin Sung Park, Duck Bin Yun, Sang Chul Lee, Jong Kyo Choi, Min-Suk Oh, Sung Jin Kim","doi":"10.3365/kjmm.2023.61.12.883","DOIUrl":null,"url":null,"abstract":"The corrosion and erosion-corrosion behaviors in the weld heat-affected zone (HAZ) of Hadfield steels with varying Cr contents (1, 2, and 3 wt%) were examined. Various experimental methods, including electrochemical polarization, impedance, and weight loss measurements, were utilized. Two types of isothermal heat treatments were conducted in a box furnace to simulate the intercritical HAZ, known to be the most vulnerable region in terms of mechanical properties and environmental stabilities, and large-scale samples for the erosion-corrosion experiment were fabricated. The results showed that increasing the Cr content improved the resistance to corrosion and erosion-corrosion, but there was an inflection point where adding more Cr had the opposite effect. Up to 2 wt%, a higher resistance was exhibited owing to the formation of a thin and protective oxide scale enriched with Cr that adhered to the steel surface. On the other hand, adding 3 wt% of Cr resulted in decreased resistance. This was due to the formation of coarse M7C3 (M: Cr) precipitated along the grain boundary, which caused the development of a thick and unstable oxide scale that detached locally. Based on these findings, it is essential to optimize the Cr content to ensure a high resistance to corrosion and erosion-corrosion in the HAZ of Hadfield steel.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":"115 23","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.12.883","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The corrosion and erosion-corrosion behaviors in the weld heat-affected zone (HAZ) of Hadfield steels with varying Cr contents (1, 2, and 3 wt%) were examined. Various experimental methods, including electrochemical polarization, impedance, and weight loss measurements, were utilized. Two types of isothermal heat treatments were conducted in a box furnace to simulate the intercritical HAZ, known to be the most vulnerable region in terms of mechanical properties and environmental stabilities, and large-scale samples for the erosion-corrosion experiment were fabricated. The results showed that increasing the Cr content improved the resistance to corrosion and erosion-corrosion, but there was an inflection point where adding more Cr had the opposite effect. Up to 2 wt%, a higher resistance was exhibited owing to the formation of a thin and protective oxide scale enriched with Cr that adhered to the steel surface. On the other hand, adding 3 wt% of Cr resulted in decreased resistance. This was due to the formation of coarse M7C3 (M: Cr) precipitated along the grain boundary, which caused the development of a thick and unstable oxide scale that detached locally. Based on these findings, it is essential to optimize the Cr content to ensure a high resistance to corrosion and erosion-corrosion in the HAZ of Hadfield steel.
期刊介绍:
The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.