Actionable descriptors of spatiotemporal urban dynamics from large-scale mobile data: A case study in Lisbon city

IF 2.6 3区 经济学 Q2 ENVIRONMENTAL STUDIES
Miguel G. Silva, Sara C. Madeira, Rui Henriques
{"title":"Actionable descriptors of spatiotemporal urban dynamics from large-scale mobile data: A case study in Lisbon city","authors":"Miguel G. Silva, Sara C. Madeira, Rui Henriques","doi":"10.1177/23998083231219048","DOIUrl":null,"url":null,"abstract":"Mobile phones share location records, offering the opportunity to monitor and understand emerging population dynamics in urban centers. With the aim of supporting urban planning, this study introduces a scalable methodology grounded on extracting and organizing spatiotemporal statistics from decomposed population density data. The proposed methodology serves three major purposes: (i) assess the predictability of spatiotemporal citizen density patterns; (ii) detect emerging spatiotemporal trends in population density; and (iii) uncover multi-level seasonality patterns with guarantees of actionability. Additionally, it makes available an open-access tool for deploying the proposed methodology and analyzing mobile phone network data with easy-to-use spatiotemporal visualization and navigation facilities. The results obtained from real-world, large-scale mobile data in Lisbon, Portugal, demonstrate the effectiveness and validity of the proposed methodology in extracting actionable statistics in linear time to guide both tactic and strategic urban planning.","PeriodicalId":11863,"journal":{"name":"Environment and Planning B: Urban Analytics and City Science","volume":"129 27","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Planning B: Urban Analytics and City Science","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/23998083231219048","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile phones share location records, offering the opportunity to monitor and understand emerging population dynamics in urban centers. With the aim of supporting urban planning, this study introduces a scalable methodology grounded on extracting and organizing spatiotemporal statistics from decomposed population density data. The proposed methodology serves three major purposes: (i) assess the predictability of spatiotemporal citizen density patterns; (ii) detect emerging spatiotemporal trends in population density; and (iii) uncover multi-level seasonality patterns with guarantees of actionability. Additionally, it makes available an open-access tool for deploying the proposed methodology and analyzing mobile phone network data with easy-to-use spatiotemporal visualization and navigation facilities. The results obtained from real-world, large-scale mobile data in Lisbon, Portugal, demonstrate the effectiveness and validity of the proposed methodology in extracting actionable statistics in linear time to guide both tactic and strategic urban planning.
从大规模移动数据中获得可操作的城市时空动态描述符:里斯本市案例研究
移动电话共享位置记录,提供了监测和了解城市中心新兴人口动态的机会。为了支持城市规划,本研究引入了一种基于从分解的人口密度数据中提取和组织时空统计数据的可扩展方法。提出的方法有三个主要目的:(i)评估公民密度时空格局的可预测性;(ii)侦测人口密度的新时空趋势;(三)揭示多层次的季节性模式,保证可操作性。此外,它还提供了一个开放访问工具,用于部署所提出的方法,并通过易于使用的时空可视化和导航设施分析移动电话网络数据。从现实世界中获得的结果,葡萄牙里斯本的大规模移动数据,证明了所提出的方法在线性时间内提取可操作统计数据以指导战术和战略城市规划的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
11.40%
发文量
159
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信