{"title":"The Effect of Paraburkholderia on the Nutrients in Eutrophic Lakes","authors":"Chengqi Tu, Yongsheng Chang, Xiaoshuang Dong, Wei Huang","doi":"10.3390/separations10120595","DOIUrl":null,"url":null,"abstract":"Cyanobacterial blooms in freshwater bodies are mainly attributed to the excess loading of nutrients. The microbes in sediments may affect nutrient migration and transformation during the growth of cyanobacteria. This study focused on the role of Paraburkholderia disturbance in affecting the sediment nutrient conditions and further contributing to cyanobacterial community succession in Meiliang Bay, Lake Taihu. The dissolving phosphorus and fixing nitrogen of Paraburkholderia with different concentration and characteristic capabilities, as well as the impact on nutrients (nitrogen (N), phosphorus (P), iron (Fe), etc.) in eutrophic lakes were determined. The results indicated that the various forms of phosphorus in the sediments showed total phosphorus (TP) > inorganic phosphorus (IP) > iron/aluminum-bound phosphate (NaOH-P) > algal-available phosphorus (AAP) > organic phosphorus (OP) > calcium-bound phosphate (HCl-P). Additionally, it was observed that with higher values of Paraburkholderia (OD600), the higher the corresponding risk of endogenous nutrient release from the sediments into the overlying water (but more is not always better), especially for the solubilization of HCl-P. The diffusion fluxes of TP, total nitrogen (TN) and Fe at the sediment–water interface (SWI) were all positive in the bacteria only experiment, with maximum values of 0.64, 15.0 and 5.02 mg/(m2d), respectively. Additionally, it was interesting that Paraburkholderia were able to produce organic acids, causing a decrease in pH. Furthermore, glucose levels can seriously affect water quality, especially the reduction in dissolved oxygen (DO) (down to 0.01 mg/L), leading to a series of side effects that have a huge impact on cyanobacterial community succession. These results provide a theoretical basis for the microbial ecological factors in eutrophic lakes.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"45 20","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120595","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacterial blooms in freshwater bodies are mainly attributed to the excess loading of nutrients. The microbes in sediments may affect nutrient migration and transformation during the growth of cyanobacteria. This study focused on the role of Paraburkholderia disturbance in affecting the sediment nutrient conditions and further contributing to cyanobacterial community succession in Meiliang Bay, Lake Taihu. The dissolving phosphorus and fixing nitrogen of Paraburkholderia with different concentration and characteristic capabilities, as well as the impact on nutrients (nitrogen (N), phosphorus (P), iron (Fe), etc.) in eutrophic lakes were determined. The results indicated that the various forms of phosphorus in the sediments showed total phosphorus (TP) > inorganic phosphorus (IP) > iron/aluminum-bound phosphate (NaOH-P) > algal-available phosphorus (AAP) > organic phosphorus (OP) > calcium-bound phosphate (HCl-P). Additionally, it was observed that with higher values of Paraburkholderia (OD600), the higher the corresponding risk of endogenous nutrient release from the sediments into the overlying water (but more is not always better), especially for the solubilization of HCl-P. The diffusion fluxes of TP, total nitrogen (TN) and Fe at the sediment–water interface (SWI) were all positive in the bacteria only experiment, with maximum values of 0.64, 15.0 and 5.02 mg/(m2d), respectively. Additionally, it was interesting that Paraburkholderia were able to produce organic acids, causing a decrease in pH. Furthermore, glucose levels can seriously affect water quality, especially the reduction in dissolved oxygen (DO) (down to 0.01 mg/L), leading to a series of side effects that have a huge impact on cyanobacterial community succession. These results provide a theoretical basis for the microbial ecological factors in eutrophic lakes.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization