Experimental research on shear mechanical properties of tomato stem

IF 2 4区 农林科学 Q2 AGRONOMY
Qimin Gao, Lei Cheng, Haiyang Shen, Yongchun Chen, Wei-jun Zhao, Zhenwei Wang, Mingjiang Chen
{"title":"Experimental research on shear mechanical properties of tomato stem","authors":"Qimin Gao, Lei Cheng, Haiyang Shen, Yongchun Chen, Wei-jun Zhao, Zhenwei Wang, Mingjiang Chen","doi":"10.31545/intagr/174993","DOIUrl":null,"url":null,"abstract":". In order to design a tomato stem crushing and bagging machine and also optimize its operational parameters, knowledge concerning the mechanical properties of harvest-ready tomato stems is required. The mechanical shear properties of the stems were studied by conducting a single-factor experiment, taking the blade angle, moisture content and sampling range as the experimental factors and the peak shear force as the evaluation indexes. The results showed that the blade angle had no significant effect on the mechanical shear properties of tomato stems, while the leaf water content and sampling location had significant effects on the mechanical shear properties of tomato stems. The largest peak force for cutting the tomato stem was observed in the middle of the sampling range, therefore a shear force greater than 411 N should be provided when designing the crushing device. At the same time, the machine should be used to harvest the tomato stalks as early as possible. The study will provide the necessary experimental data and theoretical basis for the development of an optimized tomato stem crushing and bagging machine.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":"64 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/174993","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

. In order to design a tomato stem crushing and bagging machine and also optimize its operational parameters, knowledge concerning the mechanical properties of harvest-ready tomato stems is required. The mechanical shear properties of the stems were studied by conducting a single-factor experiment, taking the blade angle, moisture content and sampling range as the experimental factors and the peak shear force as the evaluation indexes. The results showed that the blade angle had no significant effect on the mechanical shear properties of tomato stems, while the leaf water content and sampling location had significant effects on the mechanical shear properties of tomato stems. The largest peak force for cutting the tomato stem was observed in the middle of the sampling range, therefore a shear force greater than 411 N should be provided when designing the crushing device. At the same time, the machine should be used to harvest the tomato stalks as early as possible. The study will provide the necessary experimental data and theoretical basis for the development of an optimized tomato stem crushing and bagging machine.
番茄茎的剪切机械性能实验研究
. 为了设计番茄茎破碎装袋机并优化其操作参数,需要了解收获番茄茎的力学特性。采用单因素试验,以叶片角度、含水率和取样范围为试验因素,以峰值剪切力为评价指标,研究了茎秆的力学剪切性能。结果表明,叶片角度对番茄茎秆的力学剪切性能影响不显著,叶片含水量和取样位置对番茄茎秆的力学剪切性能影响显著。切割番茄茎的最大剪切力峰值出现在取样范围的中间位置,因此在设计破碎装置时应提供大于411 N的剪切力。同时,应尽早使用该机器收获番茄秸秆。该研究将为优化开发番茄茎破碎装袋机提供必要的实验数据和理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Agrophysics
International Agrophysics 农林科学-农艺学
CiteScore
3.60
自引率
9.10%
发文量
27
审稿时长
3 months
期刊介绍: The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed. Particularly the journal is focused on the following areas: implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment, soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture, postharvest management and processing of agricultural and horticultural products in relation to food quality and safety, mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing, advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments. Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used. All manuscripts are initially checked on topic suitability and linguistic quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信