Cybersickness as the virtual reality sickness questionnaire (VRSQ) measures it!? –an environment-specific revision of the VRSQ

IF 3.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Judith Josupeit
{"title":"Cybersickness as the virtual reality sickness questionnaire (VRSQ) measures it!? –an environment-specific revision of the VRSQ","authors":"Judith Josupeit","doi":"10.3389/frvir.2023.1291078","DOIUrl":null,"url":null,"abstract":"Background: Virtual Reality (VR) does not only include the use of stereoscopic images, but also possibilities for an interaction with and participation in a computer-generated environment. However, laboratory studies primarily focus on the first part of the definition only. In this context, comparing results from different VR applications with diverging goals becomes difficult. This is especially true in the field of cybersickness research (visually induced motion sickness in VR), as self-report symptom questionnaires are used. The prominent Simulator Sickness Questionnaire (SSQ) is criticized for the lack of specificity, the double factorial loadings, the outdatedness, and the unrepresentative sample. VR-specific revisions like the Virtual Reality Sickness Questionnaire (VRSQ) address these criticisms but lack generalizability.Methods: The current paper uses a Confirmatory Factor Analysis of the VRSQ with data from three different VR environments and a sample size of N = 244. The environments had different setups, visual complexities, and interaction possibilities. These characteristics influenced the factorial structure of the VRSQ as a moderator. Furthermore, to control for VR-unrelated effects Baseline ratings were taken into account.Results: The Confirmatory Factor Analysis indicated a moderate fit for the global model, but a misspecification for two of the three environments. Only the environment similar to the original VRSQ paper converged with the model.Conclusions: In conclusion, a detailed description of the VR environment is required in scientific method reports. Focusing on VR accessibility for physically impaired in addition to healthy subjects, an added Baseline measurement can address the discriminant validity. Until generalizable VR-specific revisions of the SSQ are validated, the paper suggests using the Δ-SSQ in aggregated raw format.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"7 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in virtual reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frvir.2023.1291078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Virtual Reality (VR) does not only include the use of stereoscopic images, but also possibilities for an interaction with and participation in a computer-generated environment. However, laboratory studies primarily focus on the first part of the definition only. In this context, comparing results from different VR applications with diverging goals becomes difficult. This is especially true in the field of cybersickness research (visually induced motion sickness in VR), as self-report symptom questionnaires are used. The prominent Simulator Sickness Questionnaire (SSQ) is criticized for the lack of specificity, the double factorial loadings, the outdatedness, and the unrepresentative sample. VR-specific revisions like the Virtual Reality Sickness Questionnaire (VRSQ) address these criticisms but lack generalizability.Methods: The current paper uses a Confirmatory Factor Analysis of the VRSQ with data from three different VR environments and a sample size of N = 244. The environments had different setups, visual complexities, and interaction possibilities. These characteristics influenced the factorial structure of the VRSQ as a moderator. Furthermore, to control for VR-unrelated effects Baseline ratings were taken into account.Results: The Confirmatory Factor Analysis indicated a moderate fit for the global model, but a misspecification for two of the three environments. Only the environment similar to the original VRSQ paper converged with the model.Conclusions: In conclusion, a detailed description of the VR environment is required in scientific method reports. Focusing on VR accessibility for physically impaired in addition to healthy subjects, an added Baseline measurement can address the discriminant validity. Until generalizable VR-specific revisions of the SSQ are validated, the paper suggests using the Δ-SSQ in aggregated raw format.
虚拟现实病症问卷(VRSQ)测量的网络病症!?-虚拟现实病症调查表》的环境修订版
背景:虚拟现实(VR)不仅包括使用立体图像,还包括与计算机生成的环境进行交互和参与的可能性。然而,实验室研究主要集中在定义的第一部分。在这种情况下,比较不同目标的不同VR应用的结果变得困难。在晕动病研究领域尤其如此(虚拟现实中的视觉晕车),因为使用了自我报告症状问卷。著名的模拟病问卷(SSQ)因缺乏特异性、双因子负荷、过时和样本不具代表性而受到批评。虚拟现实疾病调查问卷(VRSQ)等针对虚拟现实的修订解决了这些批评,但缺乏普遍性。方法:本文采用三种不同虚拟现实环境的数据,样本量N = 244,对VRSQ进行验证性因子分析。环境有不同的设置、视觉复杂性和交互可能性。这些特征对VRSQ的因子结构有调节作用。此外,为了控制与vr无关的影响,基线评分被考虑在内。结果:验证性因素分析表明适度适合全球模型,但对三个环境中的两个存在错误规范。只有与原VRSQ论文相似的环境才与模型收敛。结论:总之,科学方法报告中需要对VR环境进行详细的描述。在健康受试者的基础上,增加基线测量可以解决区别效度问题。在SSQ的可推广的vr特定修订得到验证之前,本文建议使用聚合原始格式的Δ-SSQ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信