Effects of Running in Minimal, Maximal and Conventional Footwear on Tibial Stress Fracture Probability: An Examination Using Finite Element and Probabilistic Analyses
IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Effects of Running in Minimal, Maximal and Conventional Footwear on Tibial Stress Fracture Probability: An Examination Using Finite Element and Probabilistic Analyses","authors":"Jonathan K Sinclair, P. Taylor","doi":"10.3390/computation11120248","DOIUrl":null,"url":null,"abstract":"This study examined the effects of minimal, maximal and conventional running footwear on tibial strains and stress fracture probability using finite element and probabilistic analyses. The current investigation examined fifteen males running in three footwear conditions (minimal, maximal and conventional). Kinematic data were collected during overground running at 4.0 m/s using an eight-camera motion-capture system and ground reaction forces using a force plate. Tibial strains were quantified using finite element modelling and stress fracture probability calculated via probabilistic modelling over 100 days of running. Ninetieth percentile tibial strains were significantly greater in minimal (4681.13 με) (p < 0.001) and conventional (4498.84 με) (p = 0.007) footwear compared to maximal (4069.65 με). Furthermore, tibial stress fracture probability was significantly greater in minimal footwear (0.22) (p = 0.047) compared to maximal (0.15). The observations from this investigation show that compared to minimal footwear, maximal running shoes appear to be effective in attenuating runners’ likelihood of developing a tibial stress fracture.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"54 13","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11120248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examined the effects of minimal, maximal and conventional running footwear on tibial strains and stress fracture probability using finite element and probabilistic analyses. The current investigation examined fifteen males running in three footwear conditions (minimal, maximal and conventional). Kinematic data were collected during overground running at 4.0 m/s using an eight-camera motion-capture system and ground reaction forces using a force plate. Tibial strains were quantified using finite element modelling and stress fracture probability calculated via probabilistic modelling over 100 days of running. Ninetieth percentile tibial strains were significantly greater in minimal (4681.13 με) (p < 0.001) and conventional (4498.84 με) (p = 0.007) footwear compared to maximal (4069.65 με). Furthermore, tibial stress fracture probability was significantly greater in minimal footwear (0.22) (p = 0.047) compared to maximal (0.15). The observations from this investigation show that compared to minimal footwear, maximal running shoes appear to be effective in attenuating runners’ likelihood of developing a tibial stress fracture.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.