Sining He, Lina Yang, Jiying Liu, Daranee Jareemit
{"title":"Spatial distribution of PM2.5 concentration around high-rise residential buildings during peak traffic hours in autumn and winter seasons","authors":"Sining He, Lina Yang, Jiying Liu, Daranee Jareemit","doi":"10.1177/1420326x231219466","DOIUrl":null,"url":null,"abstract":"This research aimed to investigate the spatial distribution of PM2.5 in residential areas near major urban roads during the autumn and winter seasons. A traffic pollution distribution model was developed using ENVI-met software to predict the distribution of pollution in and around the residential area. The experimental results indicated that during peak hours, the concentration of PM2.5 inside the residential area exceeded 140 μg/m3. The simulations indicated a horizontal diffusion range of traffic pollution up to 300 m, with the most significant effects observed within a radius of 20 m where the pollutant concentration decreased from 131.6 μg/m3 to 93.5 μg/m3. The vertical diffusion of traffic pollution extended to approximately 100 m, with the highest impact observed within a distance of 22.5 m (7 floors). Furthermore, pollution diffused up to a height of 47.5 m near major urban roads, resulting in a decrease in the concentration of PM2.5 from 140 μg/m3 to 70 μg/m3. Quantitative comparisons showed that street pollution was higher in autumn than in winter, whereas pollution outside buildings near the street was higher in winter compared to autumn. Simultaneously, the impact of pollutants on human health was evaluated using the decrease in life expectancy (DLE) index. The results revealed a DLE of 13.16 years in areas with the highest pollution levels, while most residential areas had a DLE ranging between 3.2 and 3.88 years. These findings are significant in terms of raising awareness and providing valuable references for the development and planning of urban health initiatives.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":"64 26","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x231219466","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This research aimed to investigate the spatial distribution of PM2.5 in residential areas near major urban roads during the autumn and winter seasons. A traffic pollution distribution model was developed using ENVI-met software to predict the distribution of pollution in and around the residential area. The experimental results indicated that during peak hours, the concentration of PM2.5 inside the residential area exceeded 140 μg/m3. The simulations indicated a horizontal diffusion range of traffic pollution up to 300 m, with the most significant effects observed within a radius of 20 m where the pollutant concentration decreased from 131.6 μg/m3 to 93.5 μg/m3. The vertical diffusion of traffic pollution extended to approximately 100 m, with the highest impact observed within a distance of 22.5 m (7 floors). Furthermore, pollution diffused up to a height of 47.5 m near major urban roads, resulting in a decrease in the concentration of PM2.5 from 140 μg/m3 to 70 μg/m3. Quantitative comparisons showed that street pollution was higher in autumn than in winter, whereas pollution outside buildings near the street was higher in winter compared to autumn. Simultaneously, the impact of pollutants on human health was evaluated using the decrease in life expectancy (DLE) index. The results revealed a DLE of 13.16 years in areas with the highest pollution levels, while most residential areas had a DLE ranging between 3.2 and 3.88 years. These findings are significant in terms of raising awareness and providing valuable references for the development and planning of urban health initiatives.
期刊介绍:
Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).