Study on the Influence of Sample Size on the Mechanical and Integrity Characteristics of Coal Measure Sandstone under High Strain Rate

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Enbing Yi, Zhenhua Li
{"title":"Study on the Influence of Sample Size on the Mechanical and Integrity Characteristics of Coal Measure Sandstone under High Strain Rate","authors":"Enbing Yi, Zhenhua Li","doi":"10.3390/fractalfract7120869","DOIUrl":null,"url":null,"abstract":"In order to explore the size effect of the mechanical and damage characteristics of coal measure sand stones under dynamic load, uniaxial impact compression tests were carried out on coal-bearing sand stones with a diameter of 50 mm and a length–diameter ratio of L/R = 0.5, 0.8, 1, 1.2, 1.5, 1.8, and 2 by using the Hopkinson pressure bar test system. The size effect law of the mechanical properties and energy dissipation of coal-bearing sandstone under a high strain rate were investigated. Then, the mercury injection test was carried out on the fragments at different positions, and the electron microscope scanning test was carried out on the fragments near the end of the transmission rod. Based on the area damage definition method and normalization treatment, the integrity model of coal measure sandstone, considering the influence of the length–diameter ratio, was established. The results showed that the peak strength and dynamic elastic modulus of coal measure sandstone increased first and then decreased with the increase in length–diameter ratio under impact compression load, and they reached the maximum when the length–diameter ratio was 1.2. The dynamic peak strain increased gradually with the increase in length–diameter ratio. The energy of coal-bearing sandstone showed strong size effect, that is, the total absorbed energy, elastic energy, and dissipated energy increased with the increase in length–diameter ratio, and the size effect of total absorbed energy was the most obvious. Under the same impact pressure, the porosity of coal-bearing sand stones with seven kinds of length–diameter ratios near the incident end was roughly the same. But when the length–diameter ratio was greater than 0.5, the porosity decreased gradually with the increase in the distance from the incident end. And the larger the length–diameter ratio, the more obvious the decreasing trend. When the length–diameter ratio was smaller, the size of the holes and cracks and the cluster density were larger. The integrity model of coal measure sandstone, considering the influence of the length–diameter ratio, showed that the larger the length–diameter ratio, the better the relative integrity of coal-bearing sandstone.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"15 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7120869","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to explore the size effect of the mechanical and damage characteristics of coal measure sand stones under dynamic load, uniaxial impact compression tests were carried out on coal-bearing sand stones with a diameter of 50 mm and a length–diameter ratio of L/R = 0.5, 0.8, 1, 1.2, 1.5, 1.8, and 2 by using the Hopkinson pressure bar test system. The size effect law of the mechanical properties and energy dissipation of coal-bearing sandstone under a high strain rate were investigated. Then, the mercury injection test was carried out on the fragments at different positions, and the electron microscope scanning test was carried out on the fragments near the end of the transmission rod. Based on the area damage definition method and normalization treatment, the integrity model of coal measure sandstone, considering the influence of the length–diameter ratio, was established. The results showed that the peak strength and dynamic elastic modulus of coal measure sandstone increased first and then decreased with the increase in length–diameter ratio under impact compression load, and they reached the maximum when the length–diameter ratio was 1.2. The dynamic peak strain increased gradually with the increase in length–diameter ratio. The energy of coal-bearing sandstone showed strong size effect, that is, the total absorbed energy, elastic energy, and dissipated energy increased with the increase in length–diameter ratio, and the size effect of total absorbed energy was the most obvious. Under the same impact pressure, the porosity of coal-bearing sand stones with seven kinds of length–diameter ratios near the incident end was roughly the same. But when the length–diameter ratio was greater than 0.5, the porosity decreased gradually with the increase in the distance from the incident end. And the larger the length–diameter ratio, the more obvious the decreasing trend. When the length–diameter ratio was smaller, the size of the holes and cracks and the cluster density were larger. The integrity model of coal measure sandstone, considering the influence of the length–diameter ratio, showed that the larger the length–diameter ratio, the better the relative integrity of coal-bearing sandstone.
高应变速率下样本大小对煤层砂岩力学和完整性特征的影响研究
为探讨煤系砂岩在动载作用下的力学与损伤特性的尺寸效应,采用霍普金森压杆试验系统,对直径为50 mm、长径比为L/R = 0.5、0.8、1、1.2、1.5、1.8、2的煤系砂岩进行了单轴冲击压缩试验。研究了高应变速率下含煤砂岩力学性能和能量耗散的尺寸效应规律。然后对不同位置的碎片进行压汞试验,对靠近传动杆末端的碎片进行电镜扫描试验。基于区域损伤定义方法和归一化处理,建立了考虑长径比影响的煤系砂岩完整性模型。结果表明:冲击压缩载荷作用下煤系砂岩的峰值强度和动弹性模量随长径比的增大先增大后减小,在长径比为1.2时达到最大值;动态峰值应变随长径比的增大而逐渐增大。含煤砂岩的能量表现出较强的尺寸效应,即总吸收能、弹性能和耗散能均随长径比的增大而增大,且总吸收能的尺寸效应最为明显。在相同冲击压力下,7种长径比的含煤砂岩在事件端附近的孔隙度基本相同。而当长径比大于0.5时,随着距入射端距离的增加,孔隙率逐渐减小。且长径比越大,减小趋势越明显。长径比越小,孔洞和裂纹尺寸越大,簇密度越大。考虑长径比影响的煤系砂岩完整性模型表明,长径比越大,含煤砂岩的相对完整性越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信