Navigating the Void: Uncovering Research Gaps in the Detection of Data Poisoning Attacks in Federated Learning-Based Big Data Processing: A Systematic Literature Review
{"title":"Navigating the Void: Uncovering Research Gaps in the Detection of Data Poisoning Attacks in Federated Learning-Based Big Data Processing: A Systematic Literature Review","authors":"Mohammad Aljanabi","doi":"10.58496/mjbd/2023/019","DOIUrl":null,"url":null,"abstract":"This systematic literature review scrutinizes the landscape of research at the intersection of federated learning, big data processing, and data poisoning attacks. Employing a meticulous search strategy across multiple databases, the study unveils a surge in annual scientific production, emphasizing a growing interest in federated learning and related fields. However, a critical research gap becomes evident during the investigation of data poisoning attacks specifically in the context of federated learning when processing big data. The most relevant keywords and a visually compelling word cloud further illuminate the prevailing themes and emphases within the literature, emphasizing the lack of explicit focus on detecting data poisoning attacks. This identified gap presents a significant avenue for future research, offering opportunities to enhance the security and robustness of federated learning systems against adversarial threats in large-scale data scenarios.","PeriodicalId":325612,"journal":{"name":"Mesopotamian Journal of Big Data","volume":"24 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mesopotamian Journal of Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58496/mjbd/2023/019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This systematic literature review scrutinizes the landscape of research at the intersection of federated learning, big data processing, and data poisoning attacks. Employing a meticulous search strategy across multiple databases, the study unveils a surge in annual scientific production, emphasizing a growing interest in federated learning and related fields. However, a critical research gap becomes evident during the investigation of data poisoning attacks specifically in the context of federated learning when processing big data. The most relevant keywords and a visually compelling word cloud further illuminate the prevailing themes and emphases within the literature, emphasizing the lack of explicit focus on detecting data poisoning attacks. This identified gap presents a significant avenue for future research, offering opportunities to enhance the security and robustness of federated learning systems against adversarial threats in large-scale data scenarios.