{"title":"Inverse nodal problems for Dirac operators and their numerical approximations","authors":"Fei Song, Yu-Ping Wang, S. Akbarpoor","doi":"10.58997/ejde.2023.81","DOIUrl":null,"url":null,"abstract":"In this article, we consider an inverse nodal problem of Dirac operators and obtain approximate solution and its convergence based on the second kind Chebyshev wavelet and Bernstein methods. We establish a uniqueness theorem of this problem from parts of nodal points instead of a dense nodal set. Numerical examples are carried out to illustrate our method. \nFor more information see https://ejde.math.txstate.edu/Volumes/2023/81/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"7 9","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.81","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we consider an inverse nodal problem of Dirac operators and obtain approximate solution and its convergence based on the second kind Chebyshev wavelet and Bernstein methods. We establish a uniqueness theorem of this problem from parts of nodal points instead of a dense nodal set. Numerical examples are carried out to illustrate our method.
For more information see https://ejde.math.txstate.edu/Volumes/2023/81/abstr.html
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.