Data science in drug discovery safety: Challenges and opportunities

IF 2.8 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Nicholas J Coltman, Ruth A Roberts, James E Sidaway
{"title":"Data science in drug discovery safety: Challenges and opportunities","authors":"Nicholas J Coltman, Ruth A Roberts, James E Sidaway","doi":"10.1177/15353702231215890","DOIUrl":null,"url":null,"abstract":"Early de-risking of drug targets and chemistry is essential to provide drug projects with the best chance of success. Target safety assessments (TSAs) use target biology, gene and protein expression data, genetic information from humans and animals, and competitor compound intelligence to understand the potential safety risks associated with modulating a drug target. However, there is a vast amount of information, updated daily that must be considered for each TSA. We have developed a data science–based approach that allows acquisition of relevant evidence for an optimal TSA. This is built on expert-led conventional and artificial intelligence–based mining of literature and other bioinformatics databases. Potential safety risks are identified according to an evidence framework, adjusted to the degree of target novelty. Expert knowledge is necessary to interpret the evidence and to take account of the nuances of drug safety, the modality, and the intended patient population for each TSA within each project. Overall, TSAs take full advantage of the most recent developments in data science and can be used within drug projects to identify and mitigate risks, helping with informed decision-making and resource management. These approaches should be used in the earliest stages of a drug project to guide decisions such as target selection, discovery chemistry options, in vitro assay choice, and end points for investigative in vivo studies.","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"8 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231215890","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Early de-risking of drug targets and chemistry is essential to provide drug projects with the best chance of success. Target safety assessments (TSAs) use target biology, gene and protein expression data, genetic information from humans and animals, and competitor compound intelligence to understand the potential safety risks associated with modulating a drug target. However, there is a vast amount of information, updated daily that must be considered for each TSA. We have developed a data science–based approach that allows acquisition of relevant evidence for an optimal TSA. This is built on expert-led conventional and artificial intelligence–based mining of literature and other bioinformatics databases. Potential safety risks are identified according to an evidence framework, adjusted to the degree of target novelty. Expert knowledge is necessary to interpret the evidence and to take account of the nuances of drug safety, the modality, and the intended patient population for each TSA within each project. Overall, TSAs take full advantage of the most recent developments in data science and can be used within drug projects to identify and mitigate risks, helping with informed decision-making and resource management. These approaches should be used in the earliest stages of a drug project to guide decisions such as target selection, discovery chemistry options, in vitro assay choice, and end points for investigative in vivo studies.
药物发现安全中的数据科学:挑战与机遇
早期降低药物靶点和化学的风险对于为药物项目提供最佳的成功机会至关重要。靶标安全性评估(tsa)使用靶标生物学、基因和蛋白质表达数据、人类和动物的遗传信息以及竞争对手的复合智能来了解与调节药物靶标相关的潜在安全风险。然而,每个运输安全管理局都必须考虑每天更新的大量信息。我们开发了一种基于数据科学的方法,可以获得最佳TSA的相关证据。这是建立在专家主导的传统和人工智能为基础的文献和其他生物信息学数据库的挖掘。根据证据框架识别潜在安全风险,并根据目标的新颖性进行调整。专家知识是解释证据和考虑药物安全性、方式和每个项目中每个TSA的预期患者群体的细微差别所必需的。总的来说,tsa充分利用了数据科学的最新发展,可以在药物项目中使用,以识别和降低风险,帮助做出明智的决策和资源管理。这些方法应用于药物项目的早期阶段,以指导诸如靶点选择、发现化学选择、体外测定选择和体内研究性研究的终点等决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Biology and Medicine
Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
1 months
期刊介绍: Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population. Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信