{"title":"Aspect-Based Sentiment Analysis for Afaan Oromoo Movie Reviews Using Machine Learning Techniques","authors":"Obsa Gelchu Horsa, K. K. Tune","doi":"10.1155/2023/3462691","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis (ABSA) is the subfield of natural language processing that deals with essentially splitting data into aspects and finally extracting the sentiment polarity as positive, negative, or neutral. ABSA has been widely investigated and developed for many resource-rich languages such as English and French. However, little work has been done on indigenous African languages like Afaan Oromoo both at the document and sentence levels. In this paper, ABSA for Afaan Oromoo movie reviews was investigated and developed. To achieve the proposed objective, 2800 Afaan Oromoo movie reviews were collected from YouTube using YouTube Data API. Following the data preprocessing, predetermined aspects of the Afaan Oromoo movie were extracted and labeled into positive or negative aspects by domain experts. For implementation, different machine learning algorithms including random forest, logistic regression, SVM, and multinomial naïve Bayes in combination with BoW and TF-IDF were applied. To test and measure the proposed system, accuracy, precision, recall, and f1-score were used. In the case of random forest, the accuracy obtained in combination with both BoW and TF-IDF was 88%. Using the SVM, the accuracy generated with BoW and TF-IDF was 88% and 87%, respectively. Applying logistic regression, the accuracy generated with both BoW and TF-IDF was 87%. Using multinomial naïve Bayes, the accuracy generated in combination with both BoW and TF-IDF was 88%. To improve the optimal performance evaluation parameters, different hyperparameter tuning settings were applied. The implementation result shows that the optimal values of models’ performance evaluation parameters were generated using different hyperparameter tuning settings.","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":"22 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3462691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Aspect-based sentiment analysis (ABSA) is the subfield of natural language processing that deals with essentially splitting data into aspects and finally extracting the sentiment polarity as positive, negative, or neutral. ABSA has been widely investigated and developed for many resource-rich languages such as English and French. However, little work has been done on indigenous African languages like Afaan Oromoo both at the document and sentence levels. In this paper, ABSA for Afaan Oromoo movie reviews was investigated and developed. To achieve the proposed objective, 2800 Afaan Oromoo movie reviews were collected from YouTube using YouTube Data API. Following the data preprocessing, predetermined aspects of the Afaan Oromoo movie were extracted and labeled into positive or negative aspects by domain experts. For implementation, different machine learning algorithms including random forest, logistic regression, SVM, and multinomial naïve Bayes in combination with BoW and TF-IDF were applied. To test and measure the proposed system, accuracy, precision, recall, and f1-score were used. In the case of random forest, the accuracy obtained in combination with both BoW and TF-IDF was 88%. Using the SVM, the accuracy generated with BoW and TF-IDF was 88% and 87%, respectively. Applying logistic regression, the accuracy generated with both BoW and TF-IDF was 87%. Using multinomial naïve Bayes, the accuracy generated in combination with both BoW and TF-IDF was 88%. To improve the optimal performance evaluation parameters, different hyperparameter tuning settings were applied. The implementation result shows that the optimal values of models’ performance evaluation parameters were generated using different hyperparameter tuning settings.
期刊介绍:
Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.