Vibration Signal Processing for Multirotor UAVs Fault Diagnosis: Filtering or Multiresolution Analysis?

Luttfi A. Al-Haddad, Wojciech Giernacki, A. Shandookh, Alaa Abdulhady Jaber, Radosław Puchalski
{"title":"Vibration Signal Processing for Multirotor UAVs Fault Diagnosis: Filtering or Multiresolution Analysis?","authors":"Luttfi A. Al-Haddad, Wojciech Giernacki, A. Shandookh, Alaa Abdulhady Jaber, Radosław Puchalski","doi":"10.17531/ein/176318","DOIUrl":null,"url":null,"abstract":"In the modern technological advancements, Unmanned Aerial Vehicles (UAVs) have emerged across diverse applications. As UAVs evolve, fault diagnosis witnessed great advancements, with signal processing methodologies taking center stage. This paper presents an assessment of vibration-based signal processing techniques, focusing on Kalman filtering (KF) and Discrete Wavelet Transform (DWT) multiresolution analysis. Experimental evaluation of healthy and faulty states in a quadcopter, using an accelerometer, are presented. The determination of the 1024 Hz sampling frequency is facilitated through finite element analysis of 20 mode shapes. KF exhibits commendable performance, successfully segregating faulty and healthy peaks within an acceptable range. While the six-level multi-decomposition unveils good explanations for fluctuations eluding KF. Ultimately, both KF and DWT showcase high-performance capabilities in fault diagnosis. However, DWT shows superior assessment precision, uncovering intricate details and facilitating a holistic understanding of fault-related characteristics.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"19 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/176318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the modern technological advancements, Unmanned Aerial Vehicles (UAVs) have emerged across diverse applications. As UAVs evolve, fault diagnosis witnessed great advancements, with signal processing methodologies taking center stage. This paper presents an assessment of vibration-based signal processing techniques, focusing on Kalman filtering (KF) and Discrete Wavelet Transform (DWT) multiresolution analysis. Experimental evaluation of healthy and faulty states in a quadcopter, using an accelerometer, are presented. The determination of the 1024 Hz sampling frequency is facilitated through finite element analysis of 20 mode shapes. KF exhibits commendable performance, successfully segregating faulty and healthy peaks within an acceptable range. While the six-level multi-decomposition unveils good explanations for fluctuations eluding KF. Ultimately, both KF and DWT showcase high-performance capabilities in fault diagnosis. However, DWT shows superior assessment precision, uncovering intricate details and facilitating a holistic understanding of fault-related characteristics.
用于多旋翼无人机故障诊断的振动信号处理:滤波还是多分辨率分析?
在现代技术进步中,无人驾驶飞行器(uav)已经出现在各种应用中。随着无人机的发展,故障诊断取得了巨大的进步,其中信号处理方法占据了中心位置。本文介绍了基于振动的信号处理技术的评估,重点是卡尔曼滤波(KF)和离散小波变换(DWT)多分辨率分析。利用加速度计对四轴飞行器的健康状态和故障状态进行了实验评估。通过对20个模态振型的有限元分析,确定了1024hz的采样频率。KF表现出值得称赞的性能,在可接受的范围内成功地分离出故障峰和健康峰。而六层多重分解则很好地解释了不含KF的波动。最终,KF和DWT都展示了故障诊断的高性能。然而,DWT显示了更高的评估精度,揭示了复杂的细节,并促进了对故障相关特征的整体理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信