{"title":"Otsu Image Segmentation Algorithm Based on Hybrid Fractional-Order Butterfly Optimization","authors":"Yu Ma, Ziqian Ding, Jing Zhang, Zhiqiang Ma","doi":"10.3390/fractalfract7120871","DOIUrl":null,"url":null,"abstract":"To solve the drawbacks of the Otsu image segmentation algorithm based on traditional butterfly optimization, such as slow convergence speed and poor segmentation accuracy, this paper proposes hybrid fractional-order butterfly optimization with the Otsu image segmentation algorithm. G-L-type fractional-order differentiation is combined with the algorithm’s global search to improve the position-updating method, which enhances the algorithm’s convergence speed and prevents it from falling into local optima. The sine-cosine algorithm is introduced in the local search step, and Caputo-type fractional-order differentiation is used to avoid the disadvantages of the sine-cosine algorithm and to improve the optimization accuracy of the algorithm. By dynamically converting the probability, the ratio of global search to local search is changed to attain high-efficiency and high-accuracy optimization. Based on the 2-D grayscale gradient distribution histogram, the trace of discrete matrices between classes is chosen as the fitness function, the best segmentation threshold is searched for, image segmentation is processed, and three categories of images are chosen to proceed with the segmentation test. The experimental results show that, compared with traditional butterfly optimization, the convergence rate of hybrid fractional-order butterfly optimization with the Otsu image segmentation algorithm is improved by about 73.38%; meanwhile, it has better segmentation accuracy than traditional butterfly optimization.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"42 27","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7120871","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the drawbacks of the Otsu image segmentation algorithm based on traditional butterfly optimization, such as slow convergence speed and poor segmentation accuracy, this paper proposes hybrid fractional-order butterfly optimization with the Otsu image segmentation algorithm. G-L-type fractional-order differentiation is combined with the algorithm’s global search to improve the position-updating method, which enhances the algorithm’s convergence speed and prevents it from falling into local optima. The sine-cosine algorithm is introduced in the local search step, and Caputo-type fractional-order differentiation is used to avoid the disadvantages of the sine-cosine algorithm and to improve the optimization accuracy of the algorithm. By dynamically converting the probability, the ratio of global search to local search is changed to attain high-efficiency and high-accuracy optimization. Based on the 2-D grayscale gradient distribution histogram, the trace of discrete matrices between classes is chosen as the fitness function, the best segmentation threshold is searched for, image segmentation is processed, and three categories of images are chosen to proceed with the segmentation test. The experimental results show that, compared with traditional butterfly optimization, the convergence rate of hybrid fractional-order butterfly optimization with the Otsu image segmentation algorithm is improved by about 73.38%; meanwhile, it has better segmentation accuracy than traditional butterfly optimization.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.