Spin-Hall Effect of Cylindrical Vector Vortex Beams

IF 2.1 4区 物理与天体物理 Q2 OPTICS
Xuyao Zhang, Shuo Wang, Jinhong Liu, Jinze Wu, Jinhong Li
{"title":"Spin-Hall Effect of Cylindrical Vector Vortex Beams","authors":"Xuyao Zhang, Shuo Wang, Jinhong Liu, Jinze Wu, Jinhong Li","doi":"10.3390/photonics10121356","DOIUrl":null,"url":null,"abstract":"Spin-Hall effect (SHE) of light is one of the main manifestations of the spin-orbit interaction of photons, and has been extensively studied for optical beams with homogeneous polarization. Here, we present a theoretical study of the SHE of cylindrical vector vortex beams (CVVBs) possessing inhomogeneous polarization. We derive the analytical expressions of the SHE of CVVBs reflected and refracted at a dielectric interface with radial and azimuthal polarization of incidence. The spin-dependent shifts of the SHE of light linearly depend on the topological charge of the CVVBs. In contrast to the conventional SHE of horizontally or vertically polarized beams, the SHE shifts of the CVVBs are asymmetrical when the topological charge is nonzero. This asymmetry results in the transverse Imbert–Fedorov (IF) shifts that are proportional to the topological charge. Furthermore, based on weak measurement, we propose an experimental scheme to enhance the SHE and related IF shifts with proper pre- and post-selection polarization states. Our results advance the study of the SHE of structured light and may find applications in SHE-based techniques such as precision measurement.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"46 23","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121356","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-Hall effect (SHE) of light is one of the main manifestations of the spin-orbit interaction of photons, and has been extensively studied for optical beams with homogeneous polarization. Here, we present a theoretical study of the SHE of cylindrical vector vortex beams (CVVBs) possessing inhomogeneous polarization. We derive the analytical expressions of the SHE of CVVBs reflected and refracted at a dielectric interface with radial and azimuthal polarization of incidence. The spin-dependent shifts of the SHE of light linearly depend on the topological charge of the CVVBs. In contrast to the conventional SHE of horizontally or vertically polarized beams, the SHE shifts of the CVVBs are asymmetrical when the topological charge is nonzero. This asymmetry results in the transverse Imbert–Fedorov (IF) shifts that are proportional to the topological charge. Furthermore, based on weak measurement, we propose an experimental scheme to enhance the SHE and related IF shifts with proper pre- and post-selection polarization states. Our results advance the study of the SHE of structured light and may find applications in SHE-based techniques such as precision measurement.
圆柱矢量涡束的自旋-霍尔效应
光的自旋霍尔效应(SHE)是光子自旋轨道相互作用的主要表现之一,在均匀偏振光束中得到了广泛的研究。本文对具有非均匀极化的圆柱矢量涡旋光束(CVVBs)的SHE进行了理论研究。导出了在入射偏振为径向偏振和方位偏振的情况下,CVVBs在介质界面处反射和折射的SHE的解析表达式。光的SHE的自旋相关位移线性地依赖于CVVBs的拓扑电荷。与传统的水平或垂直极化光束的SHE相比,当拓扑电荷非零时,CVVBs的SHE位移是不对称的。这种不对称性导致了与拓扑电荷成正比的横向Imbert-Fedorov (IF)位移。此外,在弱测量的基础上,我们提出了一种实验方案,通过适当的选择前和选择后极化状态来增强SHE和相关的中频位移。我们的研究结果推进了结构光的SHE研究,并可能在基于SHE的技术(如精密测量)中找到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信