Approximation of Dirichlet-to-Neumann operator for a planar thin layer and stabilization in the framework of couple stress elasticity with voids

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Athmane Abdallaoui, A. Kelleche
{"title":"Approximation of Dirichlet-to-Neumann operator for a planar thin layer and stabilization in the framework of couple stress elasticity with voids","authors":"Athmane Abdallaoui, A. Kelleche","doi":"10.3233/asy-231886","DOIUrl":null,"url":null,"abstract":"In this paper, we start from a two dimensional transmission model problem in the framework of couple stress elasticity with voids which is defined in a fixed domain Ω − juxtaposed with a planar thin layer Ω + δ . We first derive a first approximation of Dirichlet-to-Neumann operator for the thin layer Ω + δ by using the techniques of asymptotic expansion with scaling, which allows us to approximate the transmission problem by a boundary value problem doesn’t take into account any more the thin layer Ω + δ , called approximate impedance problem; after that, we prove an error estimate between the solution of the transmission problem and the solution of the approximate impedance problem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231886","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we start from a two dimensional transmission model problem in the framework of couple stress elasticity with voids which is defined in a fixed domain Ω − juxtaposed with a planar thin layer Ω + δ . We first derive a first approximation of Dirichlet-to-Neumann operator for the thin layer Ω + δ by using the techniques of asymptotic expansion with scaling, which allows us to approximate the transmission problem by a boundary value problem doesn’t take into account any more the thin layer Ω + δ , called approximate impedance problem; after that, we prove an error estimate between the solution of the transmission problem and the solution of the approximate impedance problem.
平面薄层的 Dirichlet 到 Neumann 算子的近似以及有空隙的耦合应力弹性框架下的稳定化
在本文中,我们从一个在固定域Ω−和一个平面薄层Ω + δ中定义的带空洞的耦合应力弹性框架下的二维传输模型问题开始。我们首先利用带标度的渐近展开技术推导出薄层Ω + δ的Dirichlet-to-Neumann算子的第一个近似,这使得我们可以用边值问题来近似传输问题,不再考虑薄层Ω + δ,称为近似阻抗问题;然后,我们证明了传输问题的解与近似阻抗问题解之间的误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信