{"title":"Methyl-orange/reduced graphene oxide composite as the electrode material for the solid-state supercapacitor","authors":"Karsimran Singh, Amarjeet Kaur","doi":"10.1515/ijcre-2023-0068","DOIUrl":null,"url":null,"abstract":"Abstract Herein, we have introduced the electrode material made up of a composite of an electrochemical active organic molecule (i.e. methyl orange (MO)) and reduced graphene oxide (rGO) composite. This composite is found to be a potential material for supercapacitor application due to the sustainability, redox reversibility of organic molecules, and good conductivity of rGO. For fabricating symmetric solid-state cell (MO/rGO//PVA/H2SO4//MO/rGO), polyvinyl alcohol–sulphuric acid (PVA/H2SO4) aqueous gel polymer electrolyte (GPE) has been sandwiched between the two MO/rGO electrodes. It was found that a MO/rGO based symmetric cell interfaced with a PVA/H2SO4 gel electrolyte has a specific capacitance of 166.79 F g−1 and an energy density of 11.58 Wh kg−1 at a power density of 6.25 kW kg−1. Here, good specific capacitance is the result of a combination of both electric double-layer capacitor (EDLC) and pseudo-capacitive behaviour observed in a fabricated cell. The specific capacitance is stable after 2500 cycles of charge and discharge, with an initial fade of 32 %. This synthesized material and fabricated device found its potential to be used for the supercapacitor application.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"7 9","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Herein, we have introduced the electrode material made up of a composite of an electrochemical active organic molecule (i.e. methyl orange (MO)) and reduced graphene oxide (rGO) composite. This composite is found to be a potential material for supercapacitor application due to the sustainability, redox reversibility of organic molecules, and good conductivity of rGO. For fabricating symmetric solid-state cell (MO/rGO//PVA/H2SO4//MO/rGO), polyvinyl alcohol–sulphuric acid (PVA/H2SO4) aqueous gel polymer electrolyte (GPE) has been sandwiched between the two MO/rGO electrodes. It was found that a MO/rGO based symmetric cell interfaced with a PVA/H2SO4 gel electrolyte has a specific capacitance of 166.79 F g−1 and an energy density of 11.58 Wh kg−1 at a power density of 6.25 kW kg−1. Here, good specific capacitance is the result of a combination of both electric double-layer capacitor (EDLC) and pseudo-capacitive behaviour observed in a fabricated cell. The specific capacitance is stable after 2500 cycles of charge and discharge, with an initial fade of 32 %. This synthesized material and fabricated device found its potential to be used for the supercapacitor application.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.