Baojun Bai, Mohamed Ahdaya, Ali Al Brahim, T. Song, Yugandhara Eriyagama
{"title":"Evaluation of High-Temperature Recrosslinkable Preformed Particle Gel for Fluid Loss Control during Drilling","authors":"Baojun Bai, Mohamed Ahdaya, Ali Al Brahim, T. Song, Yugandhara Eriyagama","doi":"10.1155/2023/5557890","DOIUrl":null,"url":null,"abstract":"Lost circulation has become one of the biggest challenges that drilling engineering faces during drilling, especially at high-temperature reservoirs. The consequences of lost circulation can vary from an economic aspect as well as a safety aspect. In this paper, the capability of a novel high-temperature recrosslinkable preformed particle gel (HT-RPPG) is evaluated to see whether it can be better used to control severe and total losses. The HT-RPPG is injected in the form of dispersed swellable gel particles, but it can self-crosslink to form a strong bulk gel after being placed in target zones. The sealing pressure and plugging efficiency of the HT-RPPG were evaluated utilizing a core flooding test. Various impacting factors were investigated, including the swelling ratios, fracture widths, and bentonite concentrations. Results indicated that HT-RPPG is an excellent material that can be used to control the severe loss of drilling fluids in fractured reservoirs with temperatures up to 130°C. The recrosslinked RPPG could withstand pressure up to 1,077 psi/ft for fractures up to 2 mm, and permeability was reduced more than 107 times.","PeriodicalId":148188,"journal":{"name":"Journal of GeoEnergy","volume":"10 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of GeoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5557890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lost circulation has become one of the biggest challenges that drilling engineering faces during drilling, especially at high-temperature reservoirs. The consequences of lost circulation can vary from an economic aspect as well as a safety aspect. In this paper, the capability of a novel high-temperature recrosslinkable preformed particle gel (HT-RPPG) is evaluated to see whether it can be better used to control severe and total losses. The HT-RPPG is injected in the form of dispersed swellable gel particles, but it can self-crosslink to form a strong bulk gel after being placed in target zones. The sealing pressure and plugging efficiency of the HT-RPPG were evaluated utilizing a core flooding test. Various impacting factors were investigated, including the swelling ratios, fracture widths, and bentonite concentrations. Results indicated that HT-RPPG is an excellent material that can be used to control the severe loss of drilling fluids in fractured reservoirs with temperatures up to 130°C. The recrosslinked RPPG could withstand pressure up to 1,077 psi/ft for fractures up to 2 mm, and permeability was reduced more than 107 times.