{"title":"Global well-posedness for eddy-mean vorticity equations on $$\\mathbb {T}^2$$","authors":"Yuri Cacchio’","doi":"10.1007/s00030-023-00898-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the two-dimensional, <span>\\(\\beta \\)</span>-plane, eddy-mean vorticity equations for an incompressible flow, where the zonally averaged flow varies on scales much larger than the perturbation. We prove global existence and uniqueness of the solution to the equations on periodic settings.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00898-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the two-dimensional, \(\beta \)-plane, eddy-mean vorticity equations for an incompressible flow, where the zonally averaged flow varies on scales much larger than the perturbation. We prove global existence and uniqueness of the solution to the equations on periodic settings.