{"title":"Quantitative Convergence for Displacement Monotone Mean Field Games with Controlled Volatility","authors":"Joe Jackson, Ludovic Tangpi","doi":"10.1287/moor.2023.0106","DOIUrl":null,"url":null,"abstract":"We study the convergence problem for mean field games with common noise and controlled volatility. We adopt the strategy recently put forth by Laurière and the second author, using the maximum principle to recast the convergence problem as a question of “forward-backward propagation of chaos” (i.e., (conditional) propagation of chaos for systems of particles evolving forward and backward in time). Our main results show that displacement monotonicity can be used to obtain this propagation of chaos, which leads to quantitative convergence results for open-loop Nash equilibria for a class of mean field games. Our results seem to be the first (quantitative or qualitative) that apply to games in which the common noise is controlled. The proofs are relatively simple and rely on a well-known technique for proving wellposedness of forward-backward stochastic differential equations, which is combined with displacement monotonicity in a novel way. To demonstrate the flexibility of the approach, we also use the same arguments to obtain convergence results for a class of infinite horizon discounted mean field games.Funding: J. Jackson is supported by the National Science Foundation [Grant DGE1610403]. L. Tangpi is partially supported by the National Science Foundation [Grants DMS-2005832 and DMS-2143861].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
We study the convergence problem for mean field games with common noise and controlled volatility. We adopt the strategy recently put forth by Laurière and the second author, using the maximum principle to recast the convergence problem as a question of “forward-backward propagation of chaos” (i.e., (conditional) propagation of chaos for systems of particles evolving forward and backward in time). Our main results show that displacement monotonicity can be used to obtain this propagation of chaos, which leads to quantitative convergence results for open-loop Nash equilibria for a class of mean field games. Our results seem to be the first (quantitative or qualitative) that apply to games in which the common noise is controlled. The proofs are relatively simple and rely on a well-known technique for proving wellposedness of forward-backward stochastic differential equations, which is combined with displacement monotonicity in a novel way. To demonstrate the flexibility of the approach, we also use the same arguments to obtain convergence results for a class of infinite horizon discounted mean field games.Funding: J. Jackson is supported by the National Science Foundation [Grant DGE1610403]. L. Tangpi is partially supported by the National Science Foundation [Grants DMS-2005832 and DMS-2143861].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.