Influence of PVA fibers on the durability of cementitious composites under the wet–heat–salt coupling environment

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peng Zhang, Xiaoyao Sun, Jiandong Wei, Juan Wang, Zhen Gao
{"title":"Influence of PVA fibers on the durability of cementitious composites under the wet–heat–salt coupling environment","authors":"Peng Zhang, Xiaoyao Sun, Jiandong Wei, Juan Wang, Zhen Gao","doi":"10.1515/rams-2023-0155","DOIUrl":null,"url":null,"abstract":"To investigate the effects of wet–heat–salt coupling environment (WHSCE) and the content of polyvinyl alcohol (PVA) fibers on the durability of cementitious composites (CC), a series of durability tests were carried out. In this study, the salt concentration in the WHSCE was set to 5%, the temperature at 50°C, and the relative humidity at 100%. Six different contents of PVA fibers were set up in the test for exploring their effects on the durability (impermeability, chloride ion penetration resistance, freeze–thaw resistance, and chloride salt erosion resistance under dry and wet cycle conditions) of CC. The results showed that durability of CC under the WHSCE was enhanced regardless of the content of PVA fibers added. At the PVA fiber amount of 1.2%, the impermeability pressure, electric flux, mass loss rate, compressive strength loss rate, and compressive strength corrosion resistance coefficient under the WHSCE reached the optimal values. This indicated that the durability of CC was most favorable when the amount of PVA fibers was 1.2% since many engineering structures are subject to erosion by various factors in the ocean, which can inevitably affect the service life of the purchase. In this study, the effect of PVA fiber content on the durability of CC in complex environment is studied, which provides experimental data and analytical ideas for improving engineering located in the ocean, hoping to provide a theoretical basis for their subsequent application in practical engineering.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2023-0155","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the effects of wet–heat–salt coupling environment (WHSCE) and the content of polyvinyl alcohol (PVA) fibers on the durability of cementitious composites (CC), a series of durability tests were carried out. In this study, the salt concentration in the WHSCE was set to 5%, the temperature at 50°C, and the relative humidity at 100%. Six different contents of PVA fibers were set up in the test for exploring their effects on the durability (impermeability, chloride ion penetration resistance, freeze–thaw resistance, and chloride salt erosion resistance under dry and wet cycle conditions) of CC. The results showed that durability of CC under the WHSCE was enhanced regardless of the content of PVA fibers added. At the PVA fiber amount of 1.2%, the impermeability pressure, electric flux, mass loss rate, compressive strength loss rate, and compressive strength corrosion resistance coefficient under the WHSCE reached the optimal values. This indicated that the durability of CC was most favorable when the amount of PVA fibers was 1.2% since many engineering structures are subject to erosion by various factors in the ocean, which can inevitably affect the service life of the purchase. In this study, the effect of PVA fiber content on the durability of CC in complex environment is studied, which provides experimental data and analytical ideas for improving engineering located in the ocean, hoping to provide a theoretical basis for their subsequent application in practical engineering.
湿热盐耦合环境下 PVA 纤维对水泥基复合材料耐久性的影响
为了研究湿热盐耦合环境(WHSCE)和聚乙烯醇(PVA)纤维含量对水泥基复合材料(CC)耐久性的影响,我们进行了一系列耐久性试验。这项研究将 WHSCE 中的盐浓度设定为 5%,温度设定为 50°C,相对湿度设定为 100%。试验中设置了六种不同含量的 PVA 纤维,以探讨它们对 CC 耐久性(干湿循环条件下的抗渗性、抗氯离子渗透性、抗冻融性和抗氯盐侵蚀性)的影响。结果表明,无论添加多少 PVA 纤维,CC 在 WHSCE 条件下的耐久性都有所提高。当 PVA 纤维用量为 1.2% 时,WHSCE 条件下的抗渗压力、电通量、质量损失率、抗压强度损失率和抗压强度耐腐蚀系数都达到了最佳值。这表明,当 PVA 纤维的用量为 1.2% 时,CC 的耐久性最为理想,因为许多工程结构都会受到海洋中各种因素的侵蚀,这不可避免地会影响购买的使用寿命。本研究研究了 PVA 纤维含量对复杂环境下 CC 耐久性的影响,为改善海洋中的工程提供了实验数据和分析思路,希望能为后续在实际工程中的应用提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews on Advanced Materials Science
Reviews on Advanced Materials Science 工程技术-材料科学:综合
CiteScore
5.10
自引率
11.10%
发文量
43
审稿时长
3.5 months
期刊介绍: Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信