Multitasking scheduling with shared processing

IF 1.9 4区 管理学 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Bin Fu, Yumei Huo, Hairong Zhao
{"title":"Multitasking scheduling with shared processing","authors":"Bin Fu, Yumei Huo, Hairong Zhao","doi":"10.1002/nav.22167","DOIUrl":null,"url":null,"abstract":"Recently, the problem of multitasking scheduling has raised a lot of interest in the service industries. Hall et al. (Discrete Applied Mathematics, 2016) proposed a shared processing multitasking scheduling model which allows a team to continue to work on the primary tasks while processing the routinely scheduled activities as they occur. With a team being modeled as a single machine, the processing sharing of the machine is achieved by allocating a fraction of the processing capacity to routine jobs and the remaining fraction, which we denote as sharing ratio, to the primary jobs. In this paper, we generalize this model to parallel machines and allow the fraction of the processing capacity assigned to routine jobs to vary from one to another. The objectives are minimizing makespan and minimizing the total completion time of primary jobs. We show that for both objectives, there is no polynomial time approximation algorithm unless P=NP if the sharing ratios are arbitrary for all machines. Then we consider the problems where the sharing ratios on some machines have a constant lower bound. For each objective, we analyze the performance of the classical scheduling algorithms and their variations and then develop a polynomial time approximation scheme when the number of machines is a constant.","PeriodicalId":49772,"journal":{"name":"Naval Research Logistics","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1002/nav.22167","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the problem of multitasking scheduling has raised a lot of interest in the service industries. Hall et al. (Discrete Applied Mathematics, 2016) proposed a shared processing multitasking scheduling model which allows a team to continue to work on the primary tasks while processing the routinely scheduled activities as they occur. With a team being modeled as a single machine, the processing sharing of the machine is achieved by allocating a fraction of the processing capacity to routine jobs and the remaining fraction, which we denote as sharing ratio, to the primary jobs. In this paper, we generalize this model to parallel machines and allow the fraction of the processing capacity assigned to routine jobs to vary from one to another. The objectives are minimizing makespan and minimizing the total completion time of primary jobs. We show that for both objectives, there is no polynomial time approximation algorithm unless P=NP if the sharing ratios are arbitrary for all machines. Then we consider the problems where the sharing ratios on some machines have a constant lower bound. For each objective, we analyze the performance of the classical scheduling algorithms and their variations and then develop a polynomial time approximation scheme when the number of machines is a constant.
共享处理的多任务调度
最近,多任务调度问题在服务行业引起了广泛关注。Hall 等人(《离散应用数学》,2016 年)提出了一种共享处理多任务调度模型,该模型允许团队在处理常规计划活动的同时继续完成主要任务。团队被模拟为一台机器,机器的处理共享是通过将一部分处理能力分配给常规工作,剩余部分(我们称之为共享率)分配给主要工作来实现的。在本文中,我们将这一模型推广到并行机器上,并允许分配给例行工作的处理能力各不相同。我们的目标是最大限度地缩短时间跨度和最大限度地缩短主作业的总完成时间。我们的研究表明,对于这两个目标,如果所有机器的共享率都是任意的,则除非 P=NP 否则不存在多项式时间近似算法。然后,我们考虑了某些机器上的共享率具有恒定下限的问题。针对每个目标,我们分析了经典调度算法及其变体的性能,然后开发了一种当机器数量为常数时的多项式时间近似方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Naval Research Logistics
Naval Research Logistics 管理科学-运筹学与管理科学
CiteScore
4.20
自引率
4.30%
发文量
47
审稿时长
8 months
期刊介绍: Submissions that are most appropriate for NRL are papers addressing modeling and analysis of problems motivated by real-world applications; major methodological advances in operations research and applied statistics; and expository or survey pieces of lasting value. Areas represented include (but are not limited to) probability, statistics, simulation, optimization, game theory, quality, scheduling, reliability, maintenance, supply chain, decision analysis, and combat models. Special issues devoted to a single topic are published occasionally, and proposals for special issues are welcomed by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信