On some maximal and minimal sets

IF 0.6 3区 数学 Q3 MATHEMATICS
Jin-Hui Fang, Xue-Qin Cao
{"title":"On some maximal and minimal sets","authors":"Jin-Hui Fang, Xue-Qin Cao","doi":"10.1007/s10998-023-00559-w","DOIUrl":null,"url":null,"abstract":"<p>A set <i>A</i> of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such <i>A</i> is called <i>maximal</i> if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set <span>\\(\\{a_1&lt;a_2&lt;\\cdots&lt;a_n&lt;\\cdots \\}\\)</span> of positive integers with the property that <span>\\(\\lim _{n\\rightarrow \\infty }(a_{n+1}-a_n)=\\infty \\)</span>. In this paper, we generalize their result. On the other hand, a set <i>A</i> of nonnegative integers is called an asymptotic basis of order <i>h</i> if every sufficiently large integer can be represented as a sum of <i>h</i> elements of <i>A</i>. Such <i>A</i> is defined as <i>minimal</i> if no proper subset of <i>A</i> has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00559-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A set A of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such A is called maximal if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set \(\{a_1<a_2<\cdots<a_n<\cdots \}\) of positive integers with the property that \(\lim _{n\rightarrow \infty }(a_{n+1}-a_n)=\infty \). In this paper, we generalize their result. On the other hand, a set A of nonnegative integers is called an asymptotic basis of order h if every sufficiently large integer can be represented as a sum of h elements of A. Such A is defined as minimal if no proper subset of A has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.

关于一些最大集和最小集
如果一个正整数集合 A 不包含 3 项算术级数,则称其为无 3 项集合。此外,如果这样的集合 A 不包含在任何其他无 3 项的集合中,则称其为最大集合。2006 年,通过证实厄尔多斯等人提出的问题,萨夫切夫和陈证明了存在一个正整数的最大无 3 项集 \(\{a_1<a_2<\cdots<a_n<\cdots \}\) ,其性质是 \(\lim _{n\rightarrow \infty }(a_{n+1}-a_n)=\infty \)。在本文中,我们将推广他们的结果。另一方面,如果每个足够大的整数都可以表示为 A 的 h 个元素之和,那么非负整数集合 A 就被称为阶 h 的渐近基。我们还扩展了扬扎克和舍恩关于最小渐近基的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信