Polynomial growth of the codimensions sequence of algebras with group graded involution

IF 0.8 2区 数学 Q2 MATHEMATICS
Maralice Assis de Oliveira, Rafael Bezerra dos Santos, Ana Cristina Vieira
{"title":"Polynomial growth of the codimensions sequence of algebras with group graded involution","authors":"Maralice Assis de Oliveira, Rafael Bezerra dos Santos, Ana Cristina Vieira","doi":"10.1007/s11856-023-2585-6","DOIUrl":null,"url":null,"abstract":"<p>An algebra graded by a group <i>G</i> and endowed with a graded involution * is called a (<i>G</i>, *)-algebra. Here we consider <i>G</i> a finite abelian group and classify the subvarieties of the varieties of almost polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras. Also, we present, up to equivalence, the complete list of (<i>G</i>, *)-algebras generating varieties of at most linear growth. Along the way, we give a new characterization of varieties of polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras by considering the structure of the generating algebra.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2585-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An algebra graded by a group G and endowed with a graded involution * is called a (G, *)-algebra. Here we consider G a finite abelian group and classify the subvarieties of the varieties of almost polynomial growth generated by finite-dimensional (G, *)-algebras. Also, we present, up to equivalence, the complete list of (G, *)-algebras generating varieties of at most linear growth. Along the way, we give a new characterization of varieties of polynomial growth generated by finite-dimensional (G, *)-algebras by considering the structure of the generating algebra.

有群分级内卷的代数代数的多项式增长序列
由群 G 分级并赋予分级内卷 * 的代数称为 (G, *)- 代数。在此,我们将 G 视为有限无性群,并对有限维 (G, *) 代数生成的几乎多项式增长的子域进行分类。此外,我们还提出了产生最多线性增长的变种的(G,*)代数的完整列表,直到等价为止。同时,通过考虑生成代数的结构,我们给出了由有限维 (G, *) 代数生成的多项式增长代数的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信