MBPCA-OS: an exploratory multiblock method for variables of different measurement levels. Application to study the immune response to SARS-CoV-2 infection and vaccination
Martin Paries, Evelyne Vigneau, Adeline Huneau, Olivier Lantz, Stéphanie Bougeard
{"title":"MBPCA-OS: an exploratory multiblock method for variables of different measurement levels. Application to study the immune response to SARS-CoV-2 infection and vaccination","authors":"Martin Paries, Evelyne Vigneau, Adeline Huneau, Olivier Lantz, Stéphanie Bougeard","doi":"10.1515/ijb-2023-0062","DOIUrl":null,"url":null,"abstract":"Studying a large number of variables measured on the same observations and organized in blocks – denoted multiblock data – is becoming standard in several domains especially in biology. To explore the relationships between all these variables – at the block- and the variable-level – several exploratory multiblock methods were proposed. However, most of them are only designed for numeric variables. In reality, some data sets contain variables of different measurement levels (i.e., numeric, nominal, ordinal). In this article, we focus on exploratory multiblock methods that handle variables at their appropriate measurement level. Multi-Block Principal Component Analysis with Optimal Scaling (MBPCA-OS) is proposed and applied to multiblock data from the CURIE-O-SA French cohort. In this study, variables are of different measurement levels and organized in four blocks. The objective is to study the immune responses according to the SARS-CoV-2 infection and vaccination statuses, the symptoms and the participant’s characteristics.","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"92 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0062","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Studying a large number of variables measured on the same observations and organized in blocks – denoted multiblock data – is becoming standard in several domains especially in biology. To explore the relationships between all these variables – at the block- and the variable-level – several exploratory multiblock methods were proposed. However, most of them are only designed for numeric variables. In reality, some data sets contain variables of different measurement levels (i.e., numeric, nominal, ordinal). In this article, we focus on exploratory multiblock methods that handle variables at their appropriate measurement level. Multi-Block Principal Component Analysis with Optimal Scaling (MBPCA-OS) is proposed and applied to multiblock data from the CURIE-O-SA French cohort. In this study, variables are of different measurement levels and organized in four blocks. The objective is to study the immune responses according to the SARS-CoV-2 infection and vaccination statuses, the symptoms and the participant’s characteristics.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.