On the Rankin–Selberg L-factors for SO5 × GL2

IF 0.8 2区 数学 Q2 MATHEMATICS
Yao Cheng
{"title":"On the Rankin–Selberg L-factors for SO5 × GL2","authors":"Yao Cheng","doi":"10.1007/s11856-023-2580-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>π</i> and <i>τ</i> be irreducible smooth generic representations of SO<sub>5</sub> and GL<sub>2</sub> respectively over a non-archimedean local field. We show that the <i>L</i>- and <i>ε</i>-factors attached to <i>π</i>×<i>π</i> defined by the Rankin–Selberg integrals and the associated Weil–Deligne representation coincide. The proof is obtained by explicating the relation between the Rankin–Selberg integrals for SO<sub>5</sub> × GL<sub>2</sub> and Novodvorsky’s local integrals for GSp<sub>4</sub>× GL<sub>2</sub>.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2580-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let π and τ be irreducible smooth generic representations of SO5 and GL2 respectively over a non-archimedean local field. We show that the L- and ε-factors attached to π×π defined by the Rankin–Selberg integrals and the associated Weil–Deligne representation coincide. The proof is obtained by explicating the relation between the Rankin–Selberg integrals for SO5 × GL2 and Novodvorsky’s local integrals for GSp4× GL2.

关于 SO5 × GL2 的兰金-塞尔伯格 L 因子
假设π和τ分别是非拱顶局部域上 SO5 和 GL2 的不可还原光滑通称表示。我们证明,由 Rankin-Selberg 积分定义的附加于 π×π 的 L 因子和 ε 因子与相关的 Weil-Deligne 表示重合。通过解释 SO5 × GL2 的兰金-塞尔伯格积分与 GSp4× GL2 的诺沃德沃斯基局部积分之间的关系,可以得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信