{"title":"Lifting (co)stratifications between tensor triangulated categories","authors":"Liran Shaul, Jordan Williamson","doi":"10.1007/s11856-023-2578-5","DOIUrl":null,"url":null,"abstract":"<p>We give necessary and sufficient conditions for stratification and costratification to descend along a coproduct preserving, tensor-exact <i>R</i>-linear functor between <i>R</i>-linear tensor-triangulated categories which are rigidly-compactly generated by their tensor units. We then apply these results to non-positive commutative DG-rings and connective ring spectra. In particular, this gives a support-theoretic classification of (co)localizing subcategories, and thick subcategories of compact objects of the derived category of a non-positive commutative DG-ring with finite amplitude, and provides a formal justification for the principle that the space associated to an eventually coconnective derived scheme is its underlying classical scheme. For a non-positive commutative DG-ring <i>A</i>, we also investigate whether certain finiteness conditions in D(<i>A</i>) (for example, proxy-smallness) can be reduced to questions in the better understood category D(<i>H</i><sup>0</sup><i>A</i>).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2578-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We give necessary and sufficient conditions for stratification and costratification to descend along a coproduct preserving, tensor-exact R-linear functor between R-linear tensor-triangulated categories which are rigidly-compactly generated by their tensor units. We then apply these results to non-positive commutative DG-rings and connective ring spectra. In particular, this gives a support-theoretic classification of (co)localizing subcategories, and thick subcategories of compact objects of the derived category of a non-positive commutative DG-ring with finite amplitude, and provides a formal justification for the principle that the space associated to an eventually coconnective derived scheme is its underlying classical scheme. For a non-positive commutative DG-ring A, we also investigate whether certain finiteness conditions in D(A) (for example, proxy-smallness) can be reduced to questions in the better understood category D(H0A).