Lifting (co)stratifications between tensor triangulated categories

Pub Date : 2023-11-29 DOI:10.1007/s11856-023-2578-5
Liran Shaul, Jordan Williamson
{"title":"Lifting (co)stratifications between tensor triangulated categories","authors":"Liran Shaul, Jordan Williamson","doi":"10.1007/s11856-023-2578-5","DOIUrl":null,"url":null,"abstract":"<p>We give necessary and sufficient conditions for stratification and costratification to descend along a coproduct preserving, tensor-exact <i>R</i>-linear functor between <i>R</i>-linear tensor-triangulated categories which are rigidly-compactly generated by their tensor units. We then apply these results to non-positive commutative DG-rings and connective ring spectra. In particular, this gives a support-theoretic classification of (co)localizing subcategories, and thick subcategories of compact objects of the derived category of a non-positive commutative DG-ring with finite amplitude, and provides a formal justification for the principle that the space associated to an eventually coconnective derived scheme is its underlying classical scheme. For a non-positive commutative DG-ring <i>A</i>, we also investigate whether certain finiteness conditions in D(<i>A</i>) (for example, proxy-smallness) can be reduced to questions in the better understood category D(<i>H</i><sup>0</sup><i>A</i>).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2578-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give necessary and sufficient conditions for stratification and costratification to descend along a coproduct preserving, tensor-exact R-linear functor between R-linear tensor-triangulated categories which are rigidly-compactly generated by their tensor units. We then apply these results to non-positive commutative DG-rings and connective ring spectra. In particular, this gives a support-theoretic classification of (co)localizing subcategories, and thick subcategories of compact objects of the derived category of a non-positive commutative DG-ring with finite amplitude, and provides a formal justification for the principle that the space associated to an eventually coconnective derived scheme is its underlying classical scheme. For a non-positive commutative DG-ring A, we also investigate whether certain finiteness conditions in D(A) (for example, proxy-smallness) can be reduced to questions in the better understood category D(H0A).

分享
查看原文
张量三角范畴之间的提升(共)分层
我们给出了分层和成本层化沿着R线性张量三角范畴之间的共积保留、张量-act R线性函子下降的必要条件和充分条件,这些R线性张量三角范畴是由它们的张量单元刚性-紧密地生成的。然后,我们将这些结果应用于非正交换 DG 环和连接环谱。特别是,这给出了具有有限振幅的非正换元 DG 环的派生类的(共)定位子类和紧凑对象的厚子类的支持理论分类,并为最终共轭派生方案的关联空间是其底层经典方案这一原理提供了形式上的理由。对于非正交换 DG 环 A,我们还研究了 D(A)中的某些有限性条件(例如代理完备性)是否可以简化为更好理解的类别 D(H0A) 中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信