The newform K-type and p-adic spherical harmonics

IF 0.8 2区 数学 Q2 MATHEMATICS
Peter Humphries
{"title":"The newform K-type and p-adic spherical harmonics","authors":"Peter Humphries","doi":"10.1007/s11856-023-2581-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(K: = {\\rm{G}}{{\\rm{L}}_n}({\\cal O})\\)</span> denote the maximal compact subgroup of GL<sub><i>n</i></sub>(<i>F</i>), where <i>F</i> is a nonarchimedean local field with ring of integers <span>\\({\\cal O}\\)</span>. We study the decomposition of the space of locally constant functions on the unit sphere in <i>F</i><sup><i>n</i></sup> into irreducible <i>K</i>-modules; for <i>F</i> = ℚ<sub><i>p</i></sub>, these are the <i>p</i>-adic analogues of spherical harmonics. As an application, we characterise the newform and conductor exponent of a generic irreducible admissible smooth representation of GL<sub><i>n</i></sub>(<i>F</i>) in terms of distinguished <i>K</i>-types. Finally, we compare our results to analogous results in the archimedean setting.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2581-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(K: = {\rm{G}}{{\rm{L}}_n}({\cal O})\) denote the maximal compact subgroup of GLn(F), where F is a nonarchimedean local field with ring of integers \({\cal O}\). We study the decomposition of the space of locally constant functions on the unit sphere in Fn into irreducible K-modules; for F = ℚp, these are the p-adic analogues of spherical harmonics. As an application, we characterise the newform and conductor exponent of a generic irreducible admissible smooth representation of GLn(F) in terms of distinguished K-types. Finally, we compare our results to analogous results in the archimedean setting.

新形式 K 型和 p-二次球面谐波
让 \(K: = {\rm{G}}{\rm{L}}_n}({\cal O})\)表示 GLn(F) 的最大紧凑子群,其中 F 是一个非archimedean 局部域,具有整数环 \({\cal O}\)。我们研究把 Fn 中单位球上的局部常数函数空间分解为不可还原的 K 模块;对于 F = ℚp,这些模块是球面谐波的 p-adic 类似模块。作为应用,我们用区分的 K 型描述了 GLn(F) 的一般不可还原可容许光滑表示的新形式和导体指数。最后,我们将我们的结果与阿基米德环境中的类似结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信