Orbit configuration spaces and the homotopy groups of the pair $$(\prod\nolimits_1^n {M,{F_n}} (M))$$ for M either $${\mathbb{S}^2}$$ or ℝP2

IF 0.8 2区 数学 Q2 MATHEMATICS
Daciberg Lima Gonçalves, John Guaschi
{"title":"Orbit configuration spaces and the homotopy groups of the pair $$(\\prod\\nolimits_1^n {M,{F_n}} (M))$$ for M either $${\\mathbb{S}^2}$$ or ℝP2","authors":"Daciberg Lima Gonçalves, John Guaschi","doi":"10.1007/s11856-023-2576-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i> ≥ 1, and let <span>\\({\\iota _n}:{F_n}(M) \\to \\prod\\nolimits_1^n M \\)</span> be the natural inclusion of the <i>n</i><sup>th</sup> configuration space of <i>M</i> in the <i>n</i>-fold Cartesian product of <i>M</i> with itself. In this paper, we study the map <i>ι</i><sub><i>n</i></sub>, the homotopy fibre <i>I</i><sub><i>n</i></sub> of <i>ι</i><sub><i>n</i></sub> and its homotopy groups, and the induced homomorphisms (<i>ι</i><sub><i>n</i></sub>)<sub><i>#k</i></sub> on the <i>k</i><sup>th</sup> homotopy groups of <i>F</i><sub><i>n</i></sub>(<i>M</i>) and <span>\\(\\prod\\nolimits_1^n M \\)</span> for all <i>k</i> ≥ 1, where <i>M</i> is the 2-sphere <span>\\({\\mathbb{S}^2}\\)</span> or the real projective plane ℝ<i>P</i><sup>2</sup>.It is well known that the group π<sub><i>k</i></sub>(<i>I</i><sub><i>n</i></sub>) is the homotopy group <span>\\({\\pi _{k + 1}}(\\prod\\nolimits_1^n {M,{F_n}} (M))\\)</span> for all <i>k</i> ≥ 0. If <i>k</i> ≥ 2, we show that the homomorphism (<i>ι</i><sub><i>n</i></sub><sup>)</sup><sub><i>#k</i></sub> is injective and diagonal, with the exception of the case <i>n</i> = <i>k</i> = 2 and <span>\\(M = {\\mathbb{S}^2}\\)</span>, where it is anti-diagonal. We then show that <i>I</i><sub><i>n</i></sub> has the homotopy type of <span>\\(K({R_{n - 1}},1) \\times \\Omega (\\prod\\nolimits_1^{n - 1} {{\\mathbb{S}^2}} )\\)</span>, where <i>R</i><sub><i>n</i>−1</sub> is the (<i>n</i> − 1)<sup>th</sup> Artin pure braid group if <span>\\(M = {\\mathbb{S}^2}\\)</span>, and is the fundamental group <i>G</i><sub><i>n</i>−1</sub> of the (<i>n</i>−1)<sup>th</sup> orbit configuration space of the open cylinder <span>\\({\\mathbb{S}^2}\\backslash \\{ {\\widetilde z_0}, - {\\widetilde z_0}\\} \\)</span> with respect to the action of the antipodal map of <span>\\({\\mathbb{S}^2}\\)</span> if <i>M</i> = ℝ<i>P</i><sup>2</sup>, where <span>\\({\\widetilde z_0} \\in {\\mathbb{S}^2}\\)</span>. This enables us to describe the long exact sequence in homotopy of the homotopy fibration <span>\\({I_n} \\to {F_n}(M)\\buildrel {{\\iota _n}} \\over\\longrightarrow \\prod\\nolimits_1^n M \\)</span> in geometric terms, and notably the image of the boundary homomorphism <span>\\({\\pi _{k + 1}}(\\prod\\nolimits_1^n M ) \\to {\\pi _k}({I_n})\\)</span>. From this, if <span>\\(M = {\\mathbb{S}^2}\\)</span> and <i>n</i> ≥ 3 (resp. <i>M</i> = ℝ<i>P</i><sup>2</sup> and <i>n</i> ≥ 2), we show that Ker((<i>ι</i><sub><i>n</i></sub>)<sub>#1</sub> ) is isomorphic to the quotient of <i>R</i><sub><i>n</i>−1</sub> by the square of its centre, as well as to an iterated semi-direct product of free groups with the subgroup of order 2 generated by the centre of <i>P</i><sub><i>n</i></sub> (<i>M</i>) that is reminiscent of the combing operation for the Artin pure braid groups, as well as decompositions obtained in [GG5].</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2576-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let n ≥ 1, and let \({\iota _n}:{F_n}(M) \to \prod\nolimits_1^n M \) be the natural inclusion of the nth configuration space of M in the n-fold Cartesian product of M with itself. In this paper, we study the map ιn, the homotopy fibre In of ιn and its homotopy groups, and the induced homomorphisms (ιn)#k on the kth homotopy groups of Fn(M) and \(\prod\nolimits_1^n M \) for all k ≥ 1, where M is the 2-sphere \({\mathbb{S}^2}\) or the real projective plane ℝP2.It is well known that the group πk(In) is the homotopy group \({\pi _{k + 1}}(\prod\nolimits_1^n {M,{F_n}} (M))\) for all k ≥ 0. If k ≥ 2, we show that the homomorphism (ιn)#k is injective and diagonal, with the exception of the case n = k = 2 and \(M = {\mathbb{S}^2}\), where it is anti-diagonal. We then show that In has the homotopy type of \(K({R_{n - 1}},1) \times \Omega (\prod\nolimits_1^{n - 1} {{\mathbb{S}^2}} )\), where Rn−1 is the (n − 1)th Artin pure braid group if \(M = {\mathbb{S}^2}\), and is the fundamental group Gn−1 of the (n−1)th orbit configuration space of the open cylinder \({\mathbb{S}^2}\backslash \{ {\widetilde z_0}, - {\widetilde z_0}\} \) with respect to the action of the antipodal map of \({\mathbb{S}^2}\) if M = ℝP2, where \({\widetilde z_0} \in {\mathbb{S}^2}\). This enables us to describe the long exact sequence in homotopy of the homotopy fibration \({I_n} \to {F_n}(M)\buildrel {{\iota _n}} \over\longrightarrow \prod\nolimits_1^n M \) in geometric terms, and notably the image of the boundary homomorphism \({\pi _{k + 1}}(\prod\nolimits_1^n M ) \to {\pi _k}({I_n})\). From this, if \(M = {\mathbb{S}^2}\) and n ≥ 3 (resp. M = ℝP2 and n ≥ 2), we show that Ker((ιn)#1 ) is isomorphic to the quotient of Rn−1 by the square of its centre, as well as to an iterated semi-direct product of free groups with the subgroup of order 2 generated by the centre of Pn (M) that is reminiscent of the combing operation for the Artin pure braid groups, as well as decompositions obtained in [GG5].

轨道配置空间和一对 $$(\prod\nolimits_1^n {M,{F_n}} 的同调群(M))$$ 的 M 要么是 $${\mathbb{S}^2}$ 要么是 ℝP2
让 n ≥ 1,并且让 \({\iota _n}:{F_n}(M) \to \prod\nolimits_1^n M \)是 M 的第 n 个配置空间在 M 与自身的 n 折笛卡尔积中的自然包含。本文将研究映射 ιn、ιn 的同调纤维 In 及其同调群、Fn(M)和 \(\prod\nolimits_1^n M \) 的第 k 个同调群上的诱导同构 (ιn)#k ,其中 M 是 2 球 \({\mathbb{S}^2}\) 或实投影面 ℝP2。众所周知,πk(In)群是同调群 \({\pi _{k + 1}}(\prod\nolimits_1^n {M,{F_n}})\)(M))\) 对于所有 k ≥ 0。如果 k ≥ 2,我们证明同态 (ιn)#k 是注入和对角的,除了 n = k = 2 和 \(M={\mathbb{S}^2}/),在这种情况下它是反对角的。然后我们证明 In 的同调类型为 \(K({R_{n - 1}},1) \times \Omega (\prod\nolimits_1^{n - 1} {{\mathbb{S}^2}} )\), 其中如果 \(M = {\mathbb{S}^2}\), Rn-1 是 (n - 1)th Artin 纯辫子群、是开圆柱体(n-1)轨道配置空间的基群 Gn-1 ({\mathbb{S}^2}\backslash \{ {\widetilde z_0}、- 如果 M = ℝP2,那么\({\widetilde z_0}\in {\mathbb{S}^2}) 的反角映射的作用与\({\mathbb{S}^2}\) 的反角映射的作用有关。这使我们能够描述同构纤度 \({I_n}\到{F_n}\的同构长精确序列。\to {F_n}(M)buildrel {{iota _n}\用几何术语来说就是边界同态的映像({\pi _{k + 1}}(\prod\nolimits_1^n M ) \to {\pi _k}({I_n})\).由此可见,如果 \(M = {\mathbb{S}^2}\) 并且 n ≥ 3 (respect.M = ℝP2,且 n ≥ 2),我们会证明 Ker((ιn)#1 ) 与 Rn-1 的商同构,它的中心是 Rn-1 的平方,同时也是自由群与 Pn (M) 的中心所产生的阶 2 子群的迭代半直接乘积,这让人想起阿尔丁纯辫群的梳理操作,以及在 [GG5] 中得到的分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信