On the mean radius of quasiconformal mappings

IF 0.8 2区 数学 Q2 MATHEMATICS
Alastair N. Fletcher, Jacob Pratscher
{"title":"On the mean radius of quasiconformal mappings","authors":"Alastair N. Fletcher, Jacob Pratscher","doi":"10.1007/s11856-023-2583-8","DOIUrl":null,"url":null,"abstract":"<p>We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝ<sup><i>n</i></sup>, for <i>n</i> ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in <i>L</i><sup><i>n</i>/(<i>n</i>−1)</sup>. For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2583-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝn, for n ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in Ln/(n−1). For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.

关于准共形映射的平均半径
我们研究准共形映射的平均半径增长函数。对于 n ≥ 2,我们给出了ℝn 中准共形映射的一个新子类,称为有界可积分参数化映射,简称 BIP 映射。这些映射具有这样的性质:佐里克变换对每个切片的限制在 Ln/(n-1) 中具有均匀有界的导数。对于 BIP 映射,平均半径函数的对数变换是双立普茨的。然后,我们将我们的结果应用于具有简单无穷小空间的 BIP 映射,通过证明其佐里奇变换是一个双利普斯奇兹映射,来证明渐近表示确实是准共形的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信