{"title":"On the mean radius of quasiconformal mappings","authors":"Alastair N. Fletcher, Jacob Pratscher","doi":"10.1007/s11856-023-2583-8","DOIUrl":null,"url":null,"abstract":"<p>We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝ<sup><i>n</i></sup>, for <i>n</i> ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in <i>L</i><sup><i>n</i>/(<i>n</i>−1)</sup>. For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2583-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝn, for n ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in Ln/(n−1). For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.