{"title":"APPLICATION OF SKELETAL BIOMECHANICS TO STRUCTURAL SYSTEMS","authors":"Sindhu Nachiar S, Satyanarayanan K S","doi":"10.1615/intjmultcompeng.2023050245","DOIUrl":null,"url":null,"abstract":"The concept of green construction enables a revolutionary change in construction sector in terms of design, production, and management. One such method is introducing the concept of biomimicry. Biomimicry is utilized in the field of design to solve problems. This paper mainly discusses about the mimicking of human skeleton for structural design. The idea is mimicking humerus bone as a tension member and femur bone as a compression member. The optimized members of compression and tension (strut and tie) were put together to form the mimicked king post truss analytically with the conventional cross section truss with average diameter, maximum diameter, and equivalent self-weight to the members of mimicked truss and experimentally testing with non-destructive test and point load test.The result shows that the ultimate load carrying capacity of critical compression member and tension member was 846.16 kN and 1952 kN respectively. Whereas, the achieved load was 780.30 kN and 1729 kN.Also, the ratio of analytical stiffness to self-weight is 21.83 mm-1 and the ratio of experimental stiffness to self-weight was 19.15 mm-1. Therefore, from the results it was observed that the equivalent results for mimic truss can be achieved in a truss which is modeled of equivalent self-weight. Hence the development and use of structural elements using biomimicry is feasible and that will lead to economic, green and energy efficient structures.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2023050245","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of green construction enables a revolutionary change in construction sector in terms of design, production, and management. One such method is introducing the concept of biomimicry. Biomimicry is utilized in the field of design to solve problems. This paper mainly discusses about the mimicking of human skeleton for structural design. The idea is mimicking humerus bone as a tension member and femur bone as a compression member. The optimized members of compression and tension (strut and tie) were put together to form the mimicked king post truss analytically with the conventional cross section truss with average diameter, maximum diameter, and equivalent self-weight to the members of mimicked truss and experimentally testing with non-destructive test and point load test.The result shows that the ultimate load carrying capacity of critical compression member and tension member was 846.16 kN and 1952 kN respectively. Whereas, the achieved load was 780.30 kN and 1729 kN.Also, the ratio of analytical stiffness to self-weight is 21.83 mm-1 and the ratio of experimental stiffness to self-weight was 19.15 mm-1. Therefore, from the results it was observed that the equivalent results for mimic truss can be achieved in a truss which is modeled of equivalent self-weight. Hence the development and use of structural elements using biomimicry is feasible and that will lead to economic, green and energy efficient structures.
期刊介绍:
The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.