{"title":"Steklov eigenvalue problem on subgraphs of integer lattices","authors":"Wen Han, Bobo Hua","doi":"10.4310/cag.2023.v31.n2.a4","DOIUrl":null,"url":null,"abstract":"We study the eigenvalues of the Dirichlet-to-Neumann operator on a finite subgraph of the integer lattice Zn. We estimate the first n+1 eigenvalues using the number of vertices of the subgraph. As a corollary, we prove that the first non-trivial eigenvalue of the Dirichlet-to-Neumann operator tends to zero as the number of vertices of the subgraph tends to infinity.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"71 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n2.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
We study the eigenvalues of the Dirichlet-to-Neumann operator on a finite subgraph of the integer lattice Zn. We estimate the first n+1 eigenvalues using the number of vertices of the subgraph. As a corollary, we prove that the first non-trivial eigenvalue of the Dirichlet-to-Neumann operator tends to zero as the number of vertices of the subgraph tends to infinity.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.