{"title":"Fixed point logics and definable topological properties","authors":"David Fernández-Duque, Quentin Gougeon","doi":"10.1017/s0960129523000385","DOIUrl":null,"url":null,"abstract":"<p>Modal logic enjoys topological semantics that may be traced back to McKinsey and Tarski, and the classification of topological spaces via modal axioms is a lively area of research. In the past two decades, there has been interest in extending topological modal logic to the language of the mu-calculus, but previously no class of topological spaces was known to be mu-calculus definable that was not already modally definable. In this paper, we show that the full mu-calculus is indeed more expressive than standard modal logic, in the sense that there are classes of topological spaces (and weakly transitive Kripke frames), which are mu-definable but not modally definable. The classes we exhibit satisfy a modally definable property outside of their perfect core, and thus we dub them <span>imperfect spaces.</span> We show that the mu-calculus is sound and complete for these classes. Our examples are minimal in the sense that they use a single instance of a greatest fixed point, and we show that least fixed points alone do not suffice to define any class of spaces that is not already modally definable.</p>","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"11 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129523000385","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Modal logic enjoys topological semantics that may be traced back to McKinsey and Tarski, and the classification of topological spaces via modal axioms is a lively area of research. In the past two decades, there has been interest in extending topological modal logic to the language of the mu-calculus, but previously no class of topological spaces was known to be mu-calculus definable that was not already modally definable. In this paper, we show that the full mu-calculus is indeed more expressive than standard modal logic, in the sense that there are classes of topological spaces (and weakly transitive Kripke frames), which are mu-definable but not modally definable. The classes we exhibit satisfy a modally definable property outside of their perfect core, and thus we dub them imperfect spaces. We show that the mu-calculus is sound and complete for these classes. Our examples are minimal in the sense that they use a single instance of a greatest fixed point, and we show that least fixed points alone do not suffice to define any class of spaces that is not already modally definable.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.