{"title":"Divide knots of maximal genus defect","authors":"Livio Liechti","doi":"10.4310/cag.2023.v31.n2.a5","DOIUrl":null,"url":null,"abstract":"We construct divide knots with arbitrary smooth four-genus but topological four-genus equal to one. In particular, for strongly quasipositive fibred knots, the ratio between the topological and the smooth four-genus can be arbitrarily close to zero.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n2.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We construct divide knots with arbitrary smooth four-genus but topological four-genus equal to one. In particular, for strongly quasipositive fibred knots, the ratio between the topological and the smooth four-genus can be arbitrarily close to zero.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.