Real Higgs pairs and non-abelian Hodge correspondence on a Klein surface

IF 0.7 4区 数学 Q2 MATHEMATICS
Indranil Biswas, Luis Ángel Calvo, Oscar García-Prada
{"title":"Real Higgs pairs and non-abelian Hodge correspondence on a Klein surface","authors":"Indranil Biswas, Luis Ángel Calvo, Oscar García-Prada","doi":"10.4310/cag.2023.v31.n2.a9","DOIUrl":null,"url":null,"abstract":"We introduce real structures on $L$-twisted Higgs pairs over a compact connected Riemann surface $X$ equipped with an antiholomorphic involution, where $L$ is a holomorphic line bundle on $X$ with a real structure, and prove a Hitchin–Kobayashi correspondence for the $L$-twisted Higgs pairs. Real $G^\\mathbb{R}$-Higgs bundles, where $G^\\mathbb{R}$ is a real form of a connected semisimple complex affine algebraic group $G$, constitute a particular class of examples of these pairs. In this case, the real structure of the moduli space of $G$-Higgs pairs is defined using a conjugation of $G$ that commutes with the one defining the real form $G^\\mathbb{R}$ and a compact conjugation of $G$ preserving $G^\\mathbb{R}$. We establish a homeomorphism between the moduli space of real $G^\\mathbb{R}$-Higgs bundles and the moduli space of representations of the fundamental group of $X$ in $G^\\mathbb{R}$ that can be extended to a representation of the orbifold fundamental group of $X$ into a certain enlargement of $G^\\mathbb{R}$ with quotient $\\mathbb{Z}/2 \\mathbb{Z}$. Finally, we show how real $G^\\mathbb{R}$-Higgs bundles appear naturally as fixed points of certain anti-holomorphic involutions of the moduli space of $G^\\mathbb{R}$-Higgs bundles, constructed using the real structures on $G$ and $X$. A similar result is proved for the representations of the orbifold fundamental group.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n2.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce real structures on $L$-twisted Higgs pairs over a compact connected Riemann surface $X$ equipped with an antiholomorphic involution, where $L$ is a holomorphic line bundle on $X$ with a real structure, and prove a Hitchin–Kobayashi correspondence for the $L$-twisted Higgs pairs. Real $G^\mathbb{R}$-Higgs bundles, where $G^\mathbb{R}$ is a real form of a connected semisimple complex affine algebraic group $G$, constitute a particular class of examples of these pairs. In this case, the real structure of the moduli space of $G$-Higgs pairs is defined using a conjugation of $G$ that commutes with the one defining the real form $G^\mathbb{R}$ and a compact conjugation of $G$ preserving $G^\mathbb{R}$. We establish a homeomorphism between the moduli space of real $G^\mathbb{R}$-Higgs bundles and the moduli space of representations of the fundamental group of $X$ in $G^\mathbb{R}$ that can be extended to a representation of the orbifold fundamental group of $X$ into a certain enlargement of $G^\mathbb{R}$ with quotient $\mathbb{Z}/2 \mathbb{Z}$. Finally, we show how real $G^\mathbb{R}$-Higgs bundles appear naturally as fixed points of certain anti-holomorphic involutions of the moduli space of $G^\mathbb{R}$-Higgs bundles, constructed using the real structures on $G$ and $X$. A similar result is proved for the representations of the orbifold fundamental group.
克莱因表面上的实希格斯对与非阿贝尔霍奇对应关系
我们介绍了在紧凑连通黎曼曲面$X$上的$L$扭曲希格斯对的实结构,其中$L$是$X$上具有实结构的全形线束,并证明了$L$扭曲希格斯对的希钦-小林对应关系。实$G^\mathbb{R}$-希格斯束(其中$G^\mathbb{R}$是连通的半简单复仿射代数群$G$的实形式)构成了这些对的一类特殊例子。在这种情况下,$G$-Higgs 对的模空间的实结构是通过与定义实形式 $G^\mathbb{R}$ 的共轭和保留 $G^\mathbb{R}$ 的紧凑共轭来定义的。我们在实$G^\mathbb{R}$-希格斯束的模空间和$G^\mathbb{R}$中的$X$基本群的表示的模空间之间建立了同构关系,这个同构关系可以扩展到$X$的球面基本群的表示,成为商为$\mathbb{Z}/2 \mathbb{Z}$的$G^\mathbb{R}$的某个扩大。最后,我们展示了实$G^\mathbb{R}$-希格斯束是如何自然地作为$G^\mathbb{R}$-希格斯束的模空间的某些反全形卷积的定点出现的,这些反全形卷积是用$G$和$X$上的实结构构造的。对于轨道基本群的表示,也证明了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信