Boundary Controllability of a Simplified Stabilized Kuramoto-Sivashinsky System

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Víctor Hernández-Santamaría, Alberto Mercado, Piero Visconti
{"title":"Boundary Controllability of a Simplified Stabilized Kuramoto-Sivashinsky System","authors":"Víctor Hernández-Santamaría,&nbsp;Alberto Mercado,&nbsp;Piero Visconti","doi":"10.1007/s10440-023-00626-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the controllability of a nonlinear system of coupled second- and fourth-order parabolic equations. This system can be regarded as a simplification of the well-known stabilized Kuramoto-Sivashinsky system. Using only one control applied on the boundary of the second-order equation, we prove that the local-null controllability of the system holds if the square root of the diffusion coefficient of the second-order equation is an irrational number with finite Liouville-Roth constant.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00626-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the controllability of a nonlinear system of coupled second- and fourth-order parabolic equations. This system can be regarded as a simplification of the well-known stabilized Kuramoto-Sivashinsky system. Using only one control applied on the boundary of the second-order equation, we prove that the local-null controllability of the system holds if the square root of the diffusion coefficient of the second-order equation is an irrational number with finite Liouville-Roth constant.

简化的库拉莫托-西瓦申斯基稳定系统的边界可控性
本文研究了二阶和四阶耦合抛物方程非线性系统的可控性。该系统可视为著名的稳定库拉莫托-西瓦申斯基系统的简化。我们只用了一个施加在二阶方程边界上的控制,就证明了如果二阶方程扩散系数的平方根是一个具有有限 Liouville-Roth 常数的无理数,则系统的局部空可控性成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信