Decay estimates for Cayley transforms and inverses of semigroup generators via the $\mathcal{B}$-calculus

Masashi Wakaiki
{"title":"Decay estimates for Cayley transforms and inverses of semigroup generators via the $\\mathcal{B}$-calculus","authors":"Masashi Wakaiki","doi":"arxiv-2312.05692","DOIUrl":null,"url":null,"abstract":"Let $-A$ be the generator of a bounded $C_0$-semigroup $(e^{-tA})_{t \\geq 0}$\non a Hilbert space. First we study the long-time asymptotic behavior of the\nCayley transform $V_{\\omega}(A) := (A-\\omega I) (A+\\omega I)^{-1}$ with $\\omega\n>0$. We give a decay estimate for $\\|V_{\\omega}(A)^nA^{-1}\\|$ when\n$(e^{-tA})_{t \\geq 0}$ is polynomially stable. Considering the case where the\nparameter $\\omega$ varies, we estimate $\\|\\prod_{k=1}^n\n(V_{\\omega_k}(A))A^{-1}\\|$ for exponentially stable $C_0$-semigroups\n$(e^{-tA})_{t \\geq 0}$. Next we show that if the generator $-A$ of the bounded\n$C_0$-semigroup has a bounded inverse, then $\\sup_{t \\geq 0} \\|e^{-tA^{-1}}\nA^{-\\alpha} \\| < \\infty$ for all $\\alpha >0$. We also present an estimate for\nthe rate of decay of $\\|e^{-tA^{-1}} A^{-1} \\|$, assuming that $(e^{-tA})_{t\n\\geq 0}$ is polynomially stable. To obtain these results, we use operator norm\nestimates offered by a functional calculus called the $\\mathcal{B}$-calculus.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.05692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $-A$ be the generator of a bounded $C_0$-semigroup $(e^{-tA})_{t \geq 0}$ on a Hilbert space. First we study the long-time asymptotic behavior of the Cayley transform $V_{\omega}(A) := (A-\omega I) (A+\omega I)^{-1}$ with $\omega >0$. We give a decay estimate for $\|V_{\omega}(A)^nA^{-1}\|$ when $(e^{-tA})_{t \geq 0}$ is polynomially stable. Considering the case where the parameter $\omega$ varies, we estimate $\|\prod_{k=1}^n (V_{\omega_k}(A))A^{-1}\|$ for exponentially stable $C_0$-semigroups $(e^{-tA})_{t \geq 0}$. Next we show that if the generator $-A$ of the bounded $C_0$-semigroup has a bounded inverse, then $\sup_{t \geq 0} \|e^{-tA^{-1}} A^{-\alpha} \| < \infty$ for all $\alpha >0$. We also present an estimate for the rate of decay of $\|e^{-tA^{-1}} A^{-1} \|$, assuming that $(e^{-tA})_{t \geq 0}$ is polynomially stable. To obtain these results, we use operator norm estimates offered by a functional calculus called the $\mathcal{B}$-calculus.
通过 $\mathcal{B}$ 微积分对半群生成器的 Cayley 变换和倒数进行衰减估计
假设 $-A$ 是希尔伯特空间上有界 $C_0$ 半群 $(e^{-tA})_{t \geq 0}$ 的生成器。首先,我们研究了$V_{\omega}(A) := (A-\omega I) (A+\omega I)^{-1}$ 与$\omega>0$的凯利变换的长期渐近行为。当$(e^{-tA})_{t \geq 0}$多项式稳定时,我们给出了$\|V_{\omega}(A)^nA^{-1}\|$的衰减估计值。考虑到参数$\omega$变化的情况,我们估计了指数稳定的$C_0$半群$(e^{-tA})_{t \geq 0}$的$\|\prod_{k=1}^n(V_{\omega_k}(A))A^{-1}\|$。接下来我们证明,如果有界$C_0$半群的生成子$-A$有一个有界逆,那么对于所有$\alpha >0$,$\sup_{t \geq 0} \|e^{-tA^{-1}}A^{-\alpha} \| < \infty$。我们还给出了 $\e|^{-tA^{-1}A^{-\alpha} 的衰减率的估计值。A^{-1} \|$的衰减率,假设$(e^{-tA})_{t\geq 0}$是多项式稳定的。为了得到这些结果,我们使用了一种叫做 $\mathcal{B}$-calculus 的函数微积分所提供的算子规范估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信