{"title":"Decay estimates for Cayley transforms and inverses of semigroup generators via the $\\mathcal{B}$-calculus","authors":"Masashi Wakaiki","doi":"arxiv-2312.05692","DOIUrl":null,"url":null,"abstract":"Let $-A$ be the generator of a bounded $C_0$-semigroup $(e^{-tA})_{t \\geq 0}$\non a Hilbert space. First we study the long-time asymptotic behavior of the\nCayley transform $V_{\\omega}(A) := (A-\\omega I) (A+\\omega I)^{-1}$ with $\\omega\n>0$. We give a decay estimate for $\\|V_{\\omega}(A)^nA^{-1}\\|$ when\n$(e^{-tA})_{t \\geq 0}$ is polynomially stable. Considering the case where the\nparameter $\\omega$ varies, we estimate $\\|\\prod_{k=1}^n\n(V_{\\omega_k}(A))A^{-1}\\|$ for exponentially stable $C_0$-semigroups\n$(e^{-tA})_{t \\geq 0}$. Next we show that if the generator $-A$ of the bounded\n$C_0$-semigroup has a bounded inverse, then $\\sup_{t \\geq 0} \\|e^{-tA^{-1}}\nA^{-\\alpha} \\| < \\infty$ for all $\\alpha >0$. We also present an estimate for\nthe rate of decay of $\\|e^{-tA^{-1}} A^{-1} \\|$, assuming that $(e^{-tA})_{t\n\\geq 0}$ is polynomially stable. To obtain these results, we use operator norm\nestimates offered by a functional calculus called the $\\mathcal{B}$-calculus.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.05692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $-A$ be the generator of a bounded $C_0$-semigroup $(e^{-tA})_{t \geq 0}$
on a Hilbert space. First we study the long-time asymptotic behavior of the
Cayley transform $V_{\omega}(A) := (A-\omega I) (A+\omega I)^{-1}$ with $\omega
>0$. We give a decay estimate for $\|V_{\omega}(A)^nA^{-1}\|$ when
$(e^{-tA})_{t \geq 0}$ is polynomially stable. Considering the case where the
parameter $\omega$ varies, we estimate $\|\prod_{k=1}^n
(V_{\omega_k}(A))A^{-1}\|$ for exponentially stable $C_0$-semigroups
$(e^{-tA})_{t \geq 0}$. Next we show that if the generator $-A$ of the bounded
$C_0$-semigroup has a bounded inverse, then $\sup_{t \geq 0} \|e^{-tA^{-1}}
A^{-\alpha} \| < \infty$ for all $\alpha >0$. We also present an estimate for
the rate of decay of $\|e^{-tA^{-1}} A^{-1} \|$, assuming that $(e^{-tA})_{t
\geq 0}$ is polynomially stable. To obtain these results, we use operator norm
estimates offered by a functional calculus called the $\mathcal{B}$-calculus.