{"title":"Orthogonal Dissection into Few Rectangles","authors":"David Eppstein","doi":"10.1007/s00454-023-00614-w","DOIUrl":null,"url":null,"abstract":"<p>We describe a polynomial time algorithm that takes as input a polygon with axis-parallel sides but irrational vertex coordinates, and outputs a set of as few rectangles as possible into which it can be dissected by axis-parallel cuts and translations. The number of rectangles is the rank of the Dehn invariant of the polygon. The same method can also be used to dissect an axis-parallel polygon into a simple polygon with the minimum possible number of edges. When rotations or reflections are allowed, we can approximate the minimum number of rectangles to within a factor of two.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00614-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a polynomial time algorithm that takes as input a polygon with axis-parallel sides but irrational vertex coordinates, and outputs a set of as few rectangles as possible into which it can be dissected by axis-parallel cuts and translations. The number of rectangles is the rank of the Dehn invariant of the polygon. The same method can also be used to dissect an axis-parallel polygon into a simple polygon with the minimum possible number of edges. When rotations or reflections are allowed, we can approximate the minimum number of rectangles to within a factor of two.