Fatih Acikök, Mehmet Kemal Ardoğa, Mustafa Şahmaran
{"title":"Performance of the phase change material (PCM) to reduce freeze-thaw effect in cementitious composites","authors":"Fatih Acikök, Mehmet Kemal Ardoğa, Mustafa Şahmaran","doi":"10.1680/jadcr.23.00029","DOIUrl":null,"url":null,"abstract":"One of the contemporary approach to reduce the damage on cementitious composite resulted from freeze-thaw effect is the incorporation of the phase-change materials (PCM). In this study, the composites were produced adding n-tetradecane, which is a microencapsulated organic PCM, at rates of 0, 2, 4, 6 and 8 % of the cement weight. In two different simulations representing the climate conditions of the two distinct regions in Türkiye, its effect on restriction in temperature amplitudes which the composite experienced, was determined. It is determined that the PCM, the working range of which is similar to the temperature range applied to the composite in simulation was more successful to reduce the temperature amplitudes and the rate and type of the PCM should be chosen thoughtfully according to the climate conditions, which the composite is desired to use. Moreover, besides PCM's thermal properties, its effect on the mechanical properties and consistency results were investigated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the contemporary approach to reduce the damage on cementitious composite resulted from freeze-thaw effect is the incorporation of the phase-change materials (PCM). In this study, the composites were produced adding n-tetradecane, which is a microencapsulated organic PCM, at rates of 0, 2, 4, 6 and 8 % of the cement weight. In two different simulations representing the climate conditions of the two distinct regions in Türkiye, its effect on restriction in temperature amplitudes which the composite experienced, was determined. It is determined that the PCM, the working range of which is similar to the temperature range applied to the composite in simulation was more successful to reduce the temperature amplitudes and the rate and type of the PCM should be chosen thoughtfully according to the climate conditions, which the composite is desired to use. Moreover, besides PCM's thermal properties, its effect on the mechanical properties and consistency results were investigated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.